GapMind for catabolism of small carbon sources

 

Alignments for a candidate for acn in Cupriavidus basilensis 4G11

Align Aconitate hydratase A; Aconitase; (2R,3S)-2-methylisocitrate dehydratase; (2S,3R)-3-hydroxybutane-1,2,3-tricarboxylate dehydratase; Iron-responsive protein-like; IRP-like; Probable 2-methyl-cis-aconitate hydratase; RNA-binding protein; EC 4.2.1.3; EC 4.2.1.99 (characterized)
to candidate RR42_RS11270 RR42_RS11270 aconitate hydratase

Query= SwissProt::Q937N8
         (869 letters)



>FitnessBrowser__Cup4G11:RR42_RS11270
          Length = 865

 Score = 1496 bits (3872), Expect = 0.0
 Identities = 740/870 (85%), Positives = 800/870 (91%), Gaps = 6/870 (0%)

Query: 1   MNSANRKPLPGTKLDYFDARAAVEAIQPGAYDKLPYTSRVLAENLVRRCDPATLTDSLLQ 60
           MN+ANRKPLPGT+LD+FD RAAV+AIQPGAYDKLPYTSRVLAENLVRRCDPATLTDSL Q
Sbjct: 1   MNTANRKPLPGTQLDFFDTRAAVDAIQPGAYDKLPYTSRVLAENLVRRCDPATLTDSLKQ 60

Query: 61  LVGRKRDLDFPWFPARVVCHDILGQTALVDLAGLRDAIADQGGDPAKVNPVVPVQLIVDH 120
           ++ RK++LDFPWFPARVVCHDILGQTALVDLAGLRDAIA QGGDP  VNPVVP QL+VDH
Sbjct: 61  IIERKQELDFPWFPARVVCHDILGQTALVDLAGLRDAIAAQGGDPVMVNPVVPTQLVVDH 120

Query: 121 SLAVECGGFDPDAFAKNRAIEDRRNEDRFHFIDWTKQAFKNVDVIPPGNGIMHQINLEKM 180
           SLAVECGGFDPDAFAKNRAIEDRRNEDRF FI+WTK+AFKNVDVIPPGNGI+HQINLE+M
Sbjct: 121 SLAVECGGFDPDAFAKNRAIEDRRNEDRFDFINWTKKAFKNVDVIPPGNGILHQINLERM 180

Query: 181 SPVIHADNGVAYPDTCVGTDSHTPHVDALGVIAIGVGGLEAENVMLGRASWMRLPDIVGV 240
           SPV+   +GVA+PDT VGTDSHTP VDALGVIAIGVGGLEAE+VMLGRASWMRLPDI+GV
Sbjct: 181 SPVVQVKDGVAFPDTLVGTDSHTPMVDALGVIAIGVGGLEAESVMLGRASWMRLPDIIGV 240

Query: 241 ELTGKRQPGITATDIVLALTEFLRKEKVVGAYLEFRGEGASSLTLGDRATISNMAPEYGA 300
           ELTGK QPGITATD VLALTEFLRKEKVV +YLEF GEG + LTLGDRATISNMAPE+G+
Sbjct: 241 ELTGKPQPGITATDTVLALTEFLRKEKVVSSYLEFFGEGTTHLTLGDRATISNMAPEFGS 300

Query: 301 TAAMFFIDEQTIDYLRLTGRTDEQLKLVETYARTAGLWADSLKNAEYERVLKFDLSSVVR 360
           TAAMF+IDEQTI YL+LTGR D  +KLVETYA+ AGLWADSLKNAEY RVL+FDLS+VVR
Sbjct: 301 TAAMFYIDEQTIKYLKLTGRDDALVKLVETYAKEAGLWADSLKNAEYPRVLRFDLSTVVR 360

Query: 361 NMAGPSNPHKRLPTSALAERGIAVDLDKASAQEAEGLMPDGAVIIAAITSCTNTSNPRNV 420
           N+AGPSNPHKR+PTS LA RGI+        +   GLMPDGAVIIAA+TSCTNT+NPRN+
Sbjct: 361 NIAGPSNPHKRVPTSELAARGIS-----GKVENEPGLMPDGAVIIAAVTSCTNTNNPRNM 415

Query: 421 IAAALLARNANARGLARKPWVKSSLAPGSKAVELYLEEANLLPDLEKLGFGIVAFACTTC 480
           +AA LLARNAN  GL RKPWVKSSLAPGSKAV LYLEEANLLP+LE+LGFG+VA+ACT+C
Sbjct: 416 VAAGLLARNANKLGLTRKPWVKSSLAPGSKAVTLYLEEANLLPELEQLGFGVVAYACTSC 475

Query: 481 NGMSGALDPKIQQEIIDRDLYATAVLSGNRNFDGRIHPYAKQAFLASPPLVVAYAIAGTI 540
           NGMSGALDP IQ+E++DRDLYATAVLSGNRNFDGRIHPYAKQAFLASPPLVVAYAIAGTI
Sbjct: 476 NGMSGALDPVIQKEVVDRDLYATAVLSGNRNFDGRIHPYAKQAFLASPPLVVAYAIAGTI 535

Query: 541 RFDIEKDVLGTDQDGKPVYLKDIWPSDEEIDAIVAKSVKPEQFRKVYEPMFAITAASGES 600
           RFDIEKDVLGTD DGKPV LKDIWPSDEEIDA+VA SVKP QFRKVYEPMFA+TA +GE 
Sbjct: 536 RFDIEKDVLGTDADGKPVTLKDIWPSDEEIDAVVAASVKPAQFRKVYEPMFAVTADTGEK 595

Query: 601 VSPLYDWRPQSTYIRRPPYWEGALAGERTLKALRPLAVLGDNITTDHLSPSNAIMLNSAA 660
            SPLYDWR  STYIRRPPYWEGALAGER L  +RPLAVLGDNITTDHLSPSNAIML+SAA
Sbjct: 596 ASPLYDWREMSTYIRRPPYWEGALAGERALTGMRPLAVLGDNITTDHLSPSNAIMLDSAA 655

Query: 661 GEYLARMGLPEEDFNSYATHRGDHLTAQRATFANPTLINEMAVVDGQVKKGSLARIEPEG 720
           GEYLA+MGLPEEDFNSYATHRGDHLTAQRATFANPTL NEM VVDG+VK GSLARIEPEG
Sbjct: 656 GEYLAKMGLPEEDFNSYATHRGDHLTAQRATFANPTLKNEMVVVDGKVKPGSLARIEPEG 715

Query: 721 KVVRMWEAIETYMDRKQPLIIIAGADYGQGSSRDWAAKGVRLAGVEVIVAEGFERIHRTN 780
           KV RMWEAIETYM RKQPLI++AGADYGQGSSRDWAAKGVRLAGVE IVAEGFERIHRTN
Sbjct: 716 KVTRMWEAIETYMARKQPLIVVAGADYGQGSSRDWAAKGVRLAGVEAIVAEGFERIHRTN 775

Query: 781 LIGMGVLPLEFKPGVNRLTLGLDGTETYDVIGERQPRATLTLVVNRKNGERVEVPVTCRL 840
           L+GMGVLPLEFKPGVNR TLG+DGTETYDVIG+R PR  LTLV++RKNGERVEVPVTCRL
Sbjct: 776 LVGMGVLPLEFKPGVNRATLGIDGTETYDVIGDRTPRCDLTLVMHRKNGERVEVPVTCRL 835

Query: 841 DSDEEVSIYEAGGVL-HFAQDFLESSRATA 869
           D+ EEVSIYEAGGVL  FAQDFLESS+A A
Sbjct: 836 DTAEEVSIYEAGGVLQRFAQDFLESSKAAA 865


Lambda     K      H
   0.318    0.135    0.398 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 2304
Number of extensions: 93
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 869
Length of database: 865
Length adjustment: 42
Effective length of query: 827
Effective length of database: 823
Effective search space:   680621
Effective search space used:   680621
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 56 (26.2 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory