Align 3-hydroxybutyryl-CoA dehydrogenase (EC 1.1.1.157); 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35); short-chain-enoyl-CoA hydratase (EC 4.2.1.150) (characterized)
to candidate RR42_RS11095 RR42_RS11095 3-hydroxyacyl-CoA dehydrogenase
Query= BRENDA::A4YDS4 (651 letters) >FitnessBrowser__Cup4G11:RR42_RS11095 Length = 693 Score = 184 bits (468), Expect = 9e-51 Identities = 129/399 (32%), Positives = 203/399 (50%), Gaps = 26/399 (6%) Query: 2 KVTVIGSGVMGHGIAELAAIAGNEVWMNDISTEILQQAMERIKWSLSKLRESGSL-KEGV 60 +V VIG+G MG GI AG V M + E L + + I+ + + G L +E V Sbjct: 294 RVAVIGAGTMGGGITMNFLNAGVPVIMLETKQEALDRGVATIRKNYENSAKKGKLTQEKV 353 Query: 61 EQVLARIHPETDQAQALKGSDFVIEAVKEDLELKRTIFRNAEAHASPSAVLATNTSSLPI 120 EQ + + T +K +D VIEAV E++ +K +F+ + A+LA+NTS+L + Sbjct: 354 EQRMGLL-TTTLSYDEIKDADMVIEAVFEEMGVKEIVFKKLDEVMKQGAILASNTSTLDV 412 Query: 121 SEIASVLKSPQRVVGMHFFNPPVLMPLVEIVRGKDTSDEVVKTTAEMAKSMNKETIVVKD 180 ++IAS K PQ VVGMHFF+P +M L+E+VRG+ T +V+ T ++AK + K +V Sbjct: 413 NKIASFTKRPQDVVGMHFFSPANVMKLLEVVRGEKTGKDVLATVMQLAKKIKKTAVVSGV 472 Query: 181 VPGFFVNRVLLRIMEAGCYLVEKGIASIQEVDSSAIEELGFPMGVFLLADYTGLDIGYSV 240 GF NR++ + YL+++G ++ E AIE+ GF MG F + D G DIG+++ Sbjct: 473 CDGFIGNRMIEQYSRQAGYLLDEG--ALPEQVDKAIEKFGFAMGPFRMGDLAGNDIGWAI 530 Query: 241 WKAVTARGFKAFPCSSTEKLVSQGKLGVKSGSGYYQY------PSPGKFVRPTLPSTSKK 294 K + + + L G+ G K+G+G+Y Y P P + V + SK Sbjct: 531 RKRRAIDKPEIQYSKTADLLCELGRYGQKTGAGWYDYKAGDRKPYPNQQVNDMIVQHSKD 590 Query: 295 LG------------RYLISPAVNEVSYLLREGIVGK-DDAEKGCVLGLGLP---KGILSY 338 LG L+ VNE + +L EGI K D + + G G P G + Y Sbjct: 591 LGITRRKISDEEIVERLVFALVNEGAKILEEGIASKASDIDMVYLTGYGFPLFRGGPMLY 650 Query: 339 ADEIGIDVVVNTLEEMRQTSGMDHYSPDPLLLSMVKEGK 377 AD++G+ V ++ + + + PLL+ + EGK Sbjct: 651 ADQVGLFNVAQSMARYAKGYHGEAWQAAPLLVKLAAEGK 689 Score = 108 bits (269), Expect = 1e-27 Identities = 70/206 (33%), Positives = 111/206 (53%), Gaps = 20/206 (9%) Query: 398 TIVVRVEPPLAWIVLNRPTRYNAING-------DMIREINQALDSLEEREDVRVIAITGQ 450 T +V+ +A I L+ P +NG ++ + +ALD V+ I ITG Sbjct: 2 TAQYQVQDGVAVITLDNPP----VNGLGLSTRLGIVEGMTRALDDAA----VKAIVITGA 53 Query: 451 GRVFSAGADVTEFGSLTPVKAMIASRKFHEVFMKIQFLTKPVIAVINGLALGGGMELALS 510 G+ FS GAD+ EF TP + H V ++ +KPV+A I+ +A+GGG+ELAL Sbjct: 54 GKAFSGGADIREFN--TPKATQEPT--LHSVIKVVEGSSKPVVAAIHSVAMGGGLELALG 109 Query: 511 ADFRVASKTAEMGQPEINLGLIPGGGGTQRLSRLSG-RKGLELVLTGRRVKAEEAYRLGI 569 ++RVASK A++ PE+ LGL+PG GGTQRL R+ G L ++++G + +E+ + Sbjct: 110 CNYRVASKGAQIALPEVKLGLLPGAGGTQRLPRVIGLEAALNMIVSGNAIPSEKFAGTKL 169 Query: 570 VEFLAEPEELESEVRKLANAIAEKSP 595 + + + + L + V A A P Sbjct: 170 FDEIVDGDVLPAAVAFAKTAAANPGP 195 Lambda K H 0.316 0.134 0.377 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 979 Number of extensions: 52 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 3 Number of HSP's successfully gapped: 2 Length of query: 651 Length of database: 693 Length adjustment: 39 Effective length of query: 612 Effective length of database: 654 Effective search space: 400248 Effective search space used: 400248 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 54 (25.4 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory