Align succinate-semialdehyde dehydrogenase [NAD(P)+] (EC 1.2.1.16) (characterized)
to candidate RR42_RS26155 RR42_RS26155 succinate-semialdehyde dehydrogenase
Query= BRENDA::Q0K2K1 (483 letters) >FitnessBrowser__Cup4G11:RR42_RS26155 Length = 487 Score = 815 bits (2106), Expect = 0.0 Identities = 409/481 (85%), Positives = 437/481 (90%) Query: 1 MELQHTALLRSHCLIDGEWTGAQSGAELAVCNPATGERIGSVPLAGAAEAEQAVRAAERA 60 + LQ LLRS CLIDGEWTGA GA L V NPAT + +G+VP GAAE QAV AA RA Sbjct: 5 LTLQRPGLLRSACLIDGEWTGAAGGAVLMVHNPATHDVVGTVPRCGAAETRQAVEAAARA 64 Query: 61 LPAWRAQTGKARAAVLRRWADLMLAHQEDLARLMTAEQGKPLPEARGEVAYAASFLEWFG 120 LPAWR TGKARAAVLRRWADLML HQEDLA+LMTAEQGKPL EARGE+AYAASFLEWFG Sbjct: 65 LPAWRDLTGKARAAVLRRWADLMLVHQEDLAQLMTAEQGKPLAEARGEIAYAASFLEWFG 124 Query: 121 EEAKRVDGEVLASPRSSQKMLVLREPVGVCAAITPWNFPAAMITRKVGPALAAGCTIIVK 180 EEAKRVDG+VL+SPR+ QKMLVLR+PVGVCAAITPWNFPAAMITRK GPALAAGCT+IVK Sbjct: 125 EEAKRVDGDVLSSPRAGQKMLVLRQPVGVCAAITPWNFPAAMITRKAGPALAAGCTMIVK 184 Query: 181 PAEQTPLTALALAVLGEQAGVPRGVLQVVTGDAVQIGGVLCASPVVRKLSFTGSTAIGKL 240 PAEQTPLTALALA L E+AGVPRGVLQVVTGD VQIGGVLC SPVVRKLSFTGSTAIGKL Sbjct: 185 PAEQTPLTALALAALAEEAGVPRGVLQVVTGDPVQIGGVLCESPVVRKLSFTGSTAIGKL 244 Query: 241 LMAQCAGTVKKLSLELGGNAPLIIFDDADLDRAVEGILASKFRNSGQTCVCANRIYVHDR 300 LMAQCAGTVKKLSLELGGNAPLI+F+DADLDRAV+GILASKFRNSGQTCVCANRIYVHD Sbjct: 245 LMAQCAGTVKKLSLELGGNAPLIVFEDADLDRAVDGILASKFRNSGQTCVCANRIYVHDA 304 Query: 301 VYDEVARRLVSAVEQLRPGHGVDSGVTQGPLIDADAVAKVEAHIADALAQGATVLTGGQR 360 VYDEVA RLV AV LRPGHG+DS VTQGPLIDADAVAKVE+HIADALA GA VLTGG+R Sbjct: 305 VYDEVASRLVRAVSALRPGHGIDSDVTQGPLIDADAVAKVESHIADALAHGARVLTGGKR 364 Query: 361 HALGGTFFAPTVLANATASMRVAREETFGPLAPLFRFTSEAEVVAMANDTESGLAAYFFS 420 HALGGTFF PTV+A ATA+MRVAREETFGPLAPLFRF + EV+AMANDTESGLAAYFFS Sbjct: 365 HALGGTFFEPTVVAGATAAMRVAREETFGPLAPLFRFKGDQEVIAMANDTESGLAAYFFS 424 Query: 421 RDMAKIWRVAQGLEYGMVGINTGLISNEVAPFGGVKQSGLGREGSRHGIDEYLETKYLCM 480 +DMA++WRVA+ LEYGMVGINTGLISNEVAPFGGVKQSGLGREGS +GIDEYLE KYLC+ Sbjct: 425 KDMARVWRVAEALEYGMVGINTGLISNEVAPFGGVKQSGLGREGSSYGIDEYLEMKYLCL 484 Query: 481 E 481 E Sbjct: 485 E 485 Lambda K H 0.319 0.133 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 840 Number of extensions: 13 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 483 Length of database: 487 Length adjustment: 34 Effective length of query: 449 Effective length of database: 453 Effective search space: 203397 Effective search space used: 203397 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory