Align Putative aldehyde dehydrogenase DhaS; EC 1.2.1.3 (characterized)
to candidate RR42_RS25005 RR42_RS25005 betaine-aldehyde dehydrogenase
Query= SwissProt::O34660 (495 letters) >FitnessBrowser__Cup4G11:RR42_RS25005 Length = 495 Score = 453 bits (1166), Expect = e-132 Identities = 236/500 (47%), Positives = 327/500 (65%), Gaps = 11/500 (2%) Query: 1 MSSLTMQVTKRLETFLQGTKKLYIDGKFVPSASGATFDTPNPATGETLMTLYEAQAADVD 60 MSS T V + F+ GTK+L+I G +VP+ASG FDT NPATGE + L +A D+D Sbjct: 1 MSSTTYGV--QTPAFVGGTKRLFIGGAWVPAASGKAFDTVNPATGEVIARLAQADQTDID 58 Query: 61 KAVKAARKAFDQGEWRTMSPASRSRLMYKLADLMEEHKTELAQLETLDNGKPINETTNGD 120 +AV AAR+AF+ G W + + R RL+ ++ D++E+H ELA +ETLD G P+ T G Sbjct: 59 RAVTAARQAFE-GPWNQWTHSDRQRLLIRIHDVVEKHFDELALIETLDMGAPLVRT-RGL 116 Query: 121 IPLAIEHMRYYAGWCTKITGQTIPVS---GAYFNYTRHEPVGVVGQIIPWNFPLLMAMWK 177 ++ + +YA T G P++ G + PVGVV IIPWN PLL W Sbjct: 117 KSFLLQLILFYASQ-TAAGGVQTPLNALPGKFATLKIKAPVGVVAGIIPWNGPLLSQWWI 175 Query: 178 MGAALATGCTIVLKPAEQTPLSALYLAELIDQAGFPAGVINIIPGFGEDAGEALTNHEAV 237 +GA LATGCT VLKPAE LSAL +AEL+ +AG PAGVIN++ G+G +AG AL H V Sbjct: 176 LGATLATGCTAVLKPAEDASLSALRMAELLQEAGVPAGVINVVTGYGGEAGSALAEHPGV 235 Query: 238 DKIAFTGSTEIGKKIMSTAAKSIKRVTLELGGKSPNILLPDANLKKAIPGALNGVMFNQG 297 D+IAFTGS E G++I+ +A + KRV++ELGGKSP+I+ DANL KA+PG GV N G Sbjct: 236 DRIAFTGSPETGRRIVRASAGNFKRVSVELGGKSPDIVFDDANLDKAVPGVAMGVFTNTG 295 Query: 298 QVCCAGSRVFIHKDQYDEVVDEMASYAESLRQGAGLHKDTQIGPLVSKEQHERVLSYIQK 357 Q+C AG+RV + + YDE ++ + +++ SL+ G GL Q+GP+VS+ Q +RV+ Y+ Sbjct: 296 QICAAGTRVLVQRRIYDEFIERLKAFSTSLKIGNGLDPQVQLGPIVSQRQLDRVMHYVDV 355 Query: 358 GKDEGAKAVTGG---SCPFEAGYFVAPTVFANVEDEMTIAKEEIFGPVLTAIPYETVDEV 414 G EGA+ GG AGYFV PTVF V ++MTIA+EEIFGPV + +P++T ++ Sbjct: 356 GGQEGAELACGGRRLGGELAAGYFVEPTVFTGVHNDMTIAREEIFGPVASVMPFDTPEQA 415 Query: 415 IERANHSEYGLAAGLWTENVKQAHYIADRLQAGTVWVNCYNVFDAASPFGGYKQSGLGRE 474 + AN + +GLA G+WT+N+ AH A +QAGT+WVNCY V D FGGYK SG G + Sbjct: 416 LRIANDTSFGLAGGVWTQNLSTAHRFAQGIQAGTIWVNCYGVLDPQVGFGGYKLSGYGWK 475 Query: 475 MGSYALDNYTEVKSVWVNLE 494 + +D+Y K+V++NL+ Sbjct: 476 GAAEQVDSYLYQKAVYMNLD 495 Lambda K H 0.316 0.133 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 654 Number of extensions: 25 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 495 Length of database: 495 Length adjustment: 34 Effective length of query: 461 Effective length of database: 461 Effective search space: 212521 Effective search space used: 212521 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory