Align Aldehyde dehydrogenase; Acetaldehyde dehydrogenase; EC 1.2.1.3 (characterized)
to candidate RR42_RS34255 RR42_RS34255 aldehyde dehydrogenase
Query= SwissProt::A1B4L2 (508 letters) >FitnessBrowser__Cup4G11:RR42_RS34255 Length = 506 Score = 790 bits (2040), Expect = 0.0 Identities = 379/495 (76%), Positives = 429/495 (86%) Query: 14 ALPFEERYDNFIGGEWVAPVSGRYFTNTTPITGAEIGQIARSEAGDIELALDAAHAAKEK 73 A P++E+Y+N+IGG W+AP G+YF +P+TG ++ RS D++ ALDAAH AK Sbjct: 12 AYPYKEQYENYIGGAWLAPADGQYFEAISPVTGKPFTRVPRSNQKDVDAALDAAHRAKGA 71 Query: 74 WGATSPAERANIMLKIADRMERNLELLATAETWDNGKPIRETMAADLPLAIDHFRYFAGV 133 WG TS ERANI+ +IADR+E NL LA AET DNGKPIRET AADLPLA+DHFRYFAG Sbjct: 72 WGRTSTTERANILNRIADRIEANLVTLAVAETIDNGKPIRETTAADLPLAVDHFRYFAGC 131 Query: 134 LRAQEGSISQIDDDTVAYHFHEPLGVVGQIIPWNFPLLMACWKLAPAIAAGNCVVLKPAE 193 +RAQEG IS+ID DTVAYHFHEPLGVVGQIIPWNFPLLMA WKLAPA+AAGNCVVLKPAE Sbjct: 132 IRAQEGGISEIDHDTVAYHFHEPLGVVGQIIPWNFPLLMATWKLAPALAAGNCVVLKPAE 191 Query: 194 QTPAGIMVWANLIGDLLPPGVLNIVNGFGLEAGKPLASSNRIAKIAFTGETTTGRLIMQY 253 QTPA I+V +IGDLLPPGVLN++NGFGLEAGKPLASS+RI+KIAFTGETTTGRLIMQY Sbjct: 192 QTPASILVLMEIIGDLLPPGVLNVINGFGLEAGKPLASSSRISKIAFTGETTTGRLIMQY 251 Query: 254 ASENLIPVTLELGGKSPNIFFADVAREDDDFFDKALEGFTMFALNQGEVCTCPSRVLIQE 313 AS+NLIPVTLELGGKSPNIFF DV DD +FDKALEGF MFALNQGEVCTCPSR LIQE Sbjct: 252 ASQNLIPVTLELGGKSPNIFFEDVLSADDAYFDKALEGFAMFALNQGEVCTCPSRALIQE 311 Query: 314 SIYDKFMERAVQRVQAIKQGDPRESDTMIGAQASSEQKEKILSYLDIGKKEGAEVLTGGK 373 SIY++FMERA++RV AIKQG P + TMIGAQAS EQ EKILSY+D+GK+EGA+ L GG+ Sbjct: 312 SIYERFMERALKRVAAIKQGHPLDKATMIGAQASQEQLEKILSYIDLGKQEGAQCLIGGE 371 Query: 374 AADLGGELSGGYYIEPTIFRGNNKMRIFQEEIFGPVVSVTTFKDQAEALEIANDTLYGLG 433 LGG+L+ GYY++PT+F G+NKMRIFQEEIFGPVVSVTTFKD+ EALEIANDTLYGLG Sbjct: 372 RNALGGDLASGYYVKPTVFSGHNKMRIFQEEIFGPVVSVTTFKDEEEALEIANDTLYGLG 431 Query: 434 AGVWSRDANTCYRMGRGIKAGRVWTNCYHAYPAHAAFGGYKQSGIGRETHKMMLDHYQQT 493 AGVW+RD +RMGRGI+AGRVWTNCYHAYPAHAAFGGYKQSGIGRE H+MMLDHYQQT Sbjct: 432 AGVWTRDGARAFRMGRGIQAGRVWTNCYHAYPAHAAFGGYKQSGIGRENHRMMLDHYQQT 491 Query: 494 KNMLVSYSPKKLGFF 508 KN+LVSYSP LGFF Sbjct: 492 KNLLVSYSPNALGFF 506 Lambda K H 0.319 0.136 0.411 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 885 Number of extensions: 24 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 508 Length of database: 506 Length adjustment: 34 Effective length of query: 474 Effective length of database: 472 Effective search space: 223728 Effective search space used: 223728 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory