Align Probable galactarate dehydratase (L-threo-forming); GalcD; EC 4.2.1.42 (uncharacterized)
to candidate RR42_RS34975 RR42_RS34975 galactarate dehydratase
Query= curated2:P42240 (510 letters) >FitnessBrowser__Cup4G11:RR42_RS34975 Length = 515 Score = 311 bits (798), Expect = 3e-89 Identities = 191/499 (38%), Positives = 270/499 (54%), Gaps = 27/499 (5%) Query: 8 NQAPLYIKVHEIDNTAIIVNDGGLPKGTVFSC-GLVLEEDVPQGHKVALTDLNQGDEIVR 66 + AP I++H D+ I L GTV + G+ + VP GHK+A+ + G + R Sbjct: 4 DNAPKVIRIHPADDIVIACRQ--LVPGTVIAAEGVSVASLVPPGHKLAVRAIAAGAPVRR 61 Query: 67 YGEVIGFADETIKRGSWIREALVRMPA----PPALDDLPLANRVPQPRPPLEGYTFEGYR 122 Y ++IGFA + I G + + M A D V P +F+G + Sbjct: 62 YNQIIGFARQPIAPGQHVHTHNLAMGEFTREYAAGADARATEYVDAPA------SFDGIK 115 Query: 123 NADGSAGTKNILGITTSVQCVV----GVLDYAVKRIKEELLPKYPNVDDVVPLHHQYGCG 178 ADGS T+N +GI TSV C + D+ + ++ E L +PNVD VV L H GC Sbjct: 116 RADGSVATRNYIGILTSVNCSATVARAIADHFRRELRPEALAAFPNVDGVVALTHGAGCA 175 Query: 179 VAINAPDAVIPIRTIQNLAKHPNFGGEVMVIGLGCEKLLPERIASENDD---------DI 229 + + RT+ A+HPNF V+V+GLGCE + + +E D Sbjct: 176 TDSEGENLRVLRRTLAGYARHPNFAA-VLVVGLGCEANQIDGLLAEGDLAGMAGGPRLHA 234 Query: 230 LSLQDHRGFAAMIQSILEMAEERLIRLNSRTRVSCPVSDLVIGLQCGGSDAFSGVTANPA 289 ++QD G A + + + ++ L N +R + P S + +GLQCGGSD +SG+TANPA Sbjct: 235 FNIQDSGGTAGAVARGVAIVQDLLADANRVSRQAVPASHITVGLQCGGSDGYSGLTANPA 294 Query: 290 VGYAADLLVRAGATVLFSEVTEVRDAIHLLTPRAVSEEVGQSLIKEMKWYDSYLRRGDAD 349 +G A DLLVR G + SE E+ A HLLT RA S V L++ ++W++ Y R Sbjct: 295 LGAAVDLLVRHGGGAILSETPEIYGAEHLLTRRAASPAVAARLLERIRWWEDYCARNHGS 354 Query: 350 RSANPSPGNKKGGLSNVVEKALGSVAKSGTSPISGVLGPGERAKQKGLLFAATPASDFVC 409 NPS GNK GGL+ ++EK+LG+VAKSGT+ + V + + +GL+F TP D V Sbjct: 355 MDNNPSAGNKAGGLTTILEKSLGAVAKSGTTNLVEVYEFAQPVRARGLVFMDTPGYDPVS 414 Query: 410 GTLQLAAGMNLQVFTTGRGTPYGLAAAPVLKVSTRHSLSEHWADLIDINAGRIATGEASI 469 T Q+A G NL FTTGRG+ YG A +P LK++T +L + AD IDIN G I G ASI Sbjct: 415 ATGQVAGGANLICFTTGRGSAYGCAPSPSLKLATNSALWQRQADDIDINCGDIVDGGASI 474 Query: 470 EDVGWEIFRTILDVASGRK 488 G +IFR +L+ ASGRK Sbjct: 475 AHKGEQIFRRMLETASGRK 493 Lambda K H 0.318 0.136 0.406 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 685 Number of extensions: 35 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 510 Length of database: 515 Length adjustment: 35 Effective length of query: 475 Effective length of database: 480 Effective search space: 228000 Effective search space used: 228000 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory