Align phosphogluconate dehydratase (characterized)
to candidate RR42_RS18585 RR42_RS18585 dihydroxy-acid dehydratase
Query= CharProtDB::CH_024239 (603 letters) >FitnessBrowser__Cup4G11:RR42_RS18585 Length = 577 Score = 186 bits (471), Expect = 3e-51 Identities = 154/513 (30%), Positives = 242/513 (47%), Gaps = 45/513 (8%) Query: 68 IAIITSYNDMLSAHQPYEHYPEIIRKALHEANAVGQVAGGVPAMCDGVTQGQDGME-LSL 126 I I +Y+++ + + E ++ + EA GG P ++ G+ + ++ Sbjct: 47 IGICNTYSELTPCNSHFRTLAEQVKIGVWEA-------GGFPLEFPVMSLGETMLRPTAM 99 Query: 127 LSREVIAMSAAVGLSHNMFDGALFLGVCDKIVPGLTMAALSFGHLPAVFVPSGPMASGL- 185 L R + +M + N DG + L CDK P L M A S LP + V GPM SG Sbjct: 100 LFRNLASMDVEESIRGNPIDGVVLLMGCDKTTPALMMGAASCD-LPTIGVSGGPMLSGKF 158 Query: 186 ------PNKEKVRIRQLYAEGKVDRMALLESEAASYHAPGTCTFYGTANTNQMVVEFMGM 239 + ++ + G++ + E+E+ + + G C GTA+T +VE +GM Sbjct: 159 RGGELGSGTDVWKMSEQVRAGQMSQEDFFEAESCMHRSHGHCMTMGTASTMASMVEALGM 218 Query: 240 QLPGSSFVHPDSPLRDALTAAAARQVTRMTGNGNEWMPIGKMIDEKVVVNGIVALLATGG 299 LPG++ + R+ L A+ R++ M + + + K++ N I A GG Sbjct: 219 SLPGNAAIPAVDGRRNVLARASGRRIVEMVKDN---LVMSKILTRDAFENAIRVNAAIGG 275 Query: 300 STNHTMHLVAMARAAGIQINWDDFSDLSDVVPLMARLYPNGPADINHFQAAGGVPVLVRE 359 STN +HL+A+A G+++ +D+ L +P + L P+G + F AGG+P ++RE Sbjct: 276 STNAVIHLLAIAGRIGVELKLEDWDALGHELPCLLDLQPSGRHLMEDFYYAGGLPAVIRE 335 Query: 360 LLKAGLLHEDVNTVAGFGLSRYTLEPWLNNGELDWREGAE-KSLDSNVIASFEQPFSHHG 418 L +L D TV NG+ W + + + VI +F PF + Sbjct: 336 L--ESVLARDALTV---------------NGKTLWDNCKDAPNWNREVIHAFGAPFKANA 378 Query: 419 GTKVLSGNL--GRAVMKTSAVPVENQVIEAPAVVFESQHDVMPAFEAGLLDRD--CVVVV 474 G VL GNL AV+K SA AVVFE+ + + LD D CV+V+ Sbjct: 379 GIAVLRGNLCPDGAVIKPSAATPALLKHTGRAVVFENSEHMHQRLDDESLDVDETCVLVL 438 Query: 475 RHQGPKA-NGMPELHKLMPPLGVLLDRCFKIALVTDGRLSG-ASGKVPSAIHVTPEAYDG 532 ++ GP+ GM E + P VL + V+D R+SG A G V +HV PEA G Sbjct: 439 KNCGPRGYPGMAEAGNMPLPPKVLRKGITDMVRVSDARMSGTAYGTV--VLHVAPEAAAG 496 Query: 533 GLLAKVRDGDIIRVNGQTGELTLLVDEAELAAR 565 G LA V+DGD++ ++ +L L VDEAEL R Sbjct: 497 GPLALVKDGDMVELDVPMRKLHLHVDEAELQRR 529 Lambda K H 0.318 0.134 0.392 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 845 Number of extensions: 48 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 1 Length of query: 603 Length of database: 577 Length adjustment: 37 Effective length of query: 566 Effective length of database: 540 Effective search space: 305640 Effective search space used: 305640 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory