GapMind for catabolism of small carbon sources

 

Alignments for a candidate for gntB in Cupriavidus basilensis 4G11

Align TRAP-type large permease component (characterized, see rationale)
to candidate RR42_RS10605 RR42_RS10605 C4-dicarboxylate ABC transporter permease

Query= uniprot:Q930R2
         (425 letters)



>FitnessBrowser__Cup4G11:RR42_RS10605
          Length = 615

 Score =  252 bits (644), Expect = 2e-71
 Identities = 143/411 (34%), Positives = 234/411 (56%), Gaps = 7/411 (1%)

Query: 8   VSLLGAMAIGVPVAFSLMFCGVVLMWYMGMFNTQIIAQNMIAGADTFTLLAIPFFILAGE 67
           +  +GA+ +GVP+ F L F  ++           + +Q ++AG D F LLAIPFF+LAG 
Sbjct: 196 IGFIGALVLGVPIGFVLAFAALLYFLADPSLPMLVYSQQVMAGTDHFVLLAIPFFVLAGL 255

Query: 68  LMNAGGLSRRIIDFAIACVGHIRGGLGIVAIMAAVIMASISGSAAADTAALAAILIPMMA 127
           LM A G+S R+I+  +   G +RGGLG++ I+A    + +SGS  AD AA+  I++P + 
Sbjct: 256 LMEANGMSSRLIELLLRVFGRVRGGLGLITIIATAFFSGVSGSKLADVAAVGGIVMPAVR 315

Query: 128 KAGYNVPRSAGLIAAGGVIAPVIPPSMAFIVFGVAANVSITQLFMAGIVPGLIMGIALVA 187
           +   +   +AGL+A   V+A  IPP +  I+ G  AN+SI  LFMAG+VP  +M ++L  
Sbjct: 316 RTRQDPGEAAGLLACSAVMAETIPPCINLILMGFVANISIAGLFMAGLVPAAVMALSLAV 375

Query: 188 TWLLVVRK--DDIQPLPRTPMKERVGATGRALWALGMPVIILGGIKAGVVTPTEAAVVAA 245
             ++V RK   D     RTP+   +G    AL AL M  +I  G+ +G+ T TE +  A 
Sbjct: 376 LAVIVGRKINPDEAFEHRTPLWPLLGG---ALVALIMVGMIGKGVTSGIATSTEVSAFAV 432

Query: 246 VYALFVGMVIYRELKPRDLPGVILQAAKTTAVIMFLVCAALVSSWLITAANIPSEITGFI 305
           VYAL VG + +REL  R +  + +++A     I+F+V AA   S+ +T   IP  ++G +
Sbjct: 433 VYALVVGGLAFRELNLRSVARLFVRSASMAGGILFIVAAASSVSFALTIEQIPQLMSGTM 492

Query: 306 SPLIDRPTLLMFVIM--LVVLVVGTALDLTPTILILTPVLMPIIKQAGIDPVYFGVLFIM 363
           +    +   +MF+++  L+++V G  L+  P ++I  P+L PI +Q G++P++FG + ++
Sbjct: 493 TAFAAQYGSVMFIMLSALLMMVFGAVLEGAPALIIFGPLLTPIAQQLGVNPLHFGTVMVI 552

Query: 364 NTCIGLLTPPVGVVLNVVSGVGRVPLGKVIVGVTPFLVAQILVLFLLVLFP 414
              +GL  PPVG+ L     +    +  V   +  +L   ++ L LL+L P
Sbjct: 553 AMGLGLFAPPVGLGLFATCAITGTQVKDVARPMLKYLAVLLVALVLLILVP 603


Lambda     K      H
   0.331    0.145    0.430 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 659
Number of extensions: 34
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 425
Length of database: 615
Length adjustment: 35
Effective length of query: 390
Effective length of database: 580
Effective search space:   226200
Effective search space used:   226200
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 15 ( 7.2 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 40 (21.9 bits)
S2: 52 (24.6 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory