Align Alpha-ketoglutaric semialdehyde dehydrogenase 2; alphaKGSA dehydrogenase 2; 2,5-dioxovalerate dehydrogenase 2; KGSADH-II; EC 1.2.1.26 (characterized)
to candidate RR42_RS04830 RR42_RS04830 2,5-dioxovalerate dehydrogenase
Query= SwissProt::Q08IC0 (525 letters) >FitnessBrowser__Cup4G11:RR42_RS04830 Length = 525 Score = 644 bits (1662), Expect = 0.0 Identities = 341/523 (65%), Positives = 397/523 (75%), Gaps = 2/523 (0%) Query: 1 MQLTGEMLIGAEAVAGSAGTLRAFDPSKGEPIDAPVFGVAAQADVERACELARDAFDAYR 60 M +TGEMLIGA AV G+ L A +P+ GE + AP F A+ ERAC LA AFD YR Sbjct: 1 MTITGEMLIGASAVRGTTKILHATNPATGEVL-APEFHGGGAAEAERACALAEAAFDTYR 59 Query: 61 AQPLAARAAFLEAIADEIVALGDALIERAHAETGLPVARLQGERGRTVGQLRLFARVVRD 120 RA FLE+IA + ALGD LIERAHAE+ LPVARLQGER RT GQLRLFA V+RD Sbjct: 60 NTSPETRARFLESIASGLEALGDTLIERAHAESALPVARLQGERARTAGQLRLFASVLRD 119 Query: 121 GRFLAASIDPAQPARTPLPRSDLRLQKVGLGPVVVFGASNFPLAFSVAGGDTASALAAGC 180 GR+ +A++D A P RTP PR DLRLQK+ +GPV VFGASNFPLAFSVAGGDTASALAAGC Sbjct: 120 GRWQSATLDSALPERTP-PRPDLRLQKIAVGPVAVFGASNFPLAFSVAGGDTASALAAGC 178 Query: 181 PVIVKAHEAHLGTSELVGRAIRAAVAKTGMPAGVFSLLVGPGRVIGGALVSHPAVQAVGF 240 PV+VKAH AHLGTSELVGR I+ AVA G+P GVFSLLVG G +G ALV+HP++QAVGF Sbjct: 179 PVVVKAHSAHLGTSELVGRVIQKAVADAGLPEGVFSLLVGAGVAVGTALVAHPSIQAVGF 238 Query: 241 TGSRQGGMALVQIANARPQPIPVYAEMSSINPVVLFPAALAARGDAIATGFVDSLTLGVG 300 TGSR GG+ALVQ AN+RPQPIPVYAEMSSINPV L PAALAARG IA VDSL +GVG Sbjct: 239 TGSRSGGLALVQTANSRPQPIPVYAEMSSINPVFLLPAALAARGAQIARNLVDSLVMGVG 298 Query: 301 QFCTNPGLVLAIDGPDLDRFETVAAQALAKKPAGVMLTQGIADAYRNGRGKLAELPGVRE 360 QFCTNPGL+LA++ P LD F A ALA+K A MLT GI+ AY NG +L+++ G+R Sbjct: 299 QFCTNPGLLLAVESPALDVFRQGAIAALAEKAAATMLTPGISQAYDNGVAQLSDIEGLRR 358 Query: 361 IGAGEAAQTDCQAGGALYEVGAQAFLAEPAFSHEVFGPASLIVRCRDLDEVARVLEALEG 420 IG+G+ A QA AL+E A+ FLA+ EVFGP+S++V CRD +E+ V LEG Sbjct: 359 IGSGQTASGPNQARPALFETTAERFLADHRMEAEVFGPSSVLVVCRDHEEMLAVARRLEG 418 Query: 421 QLTATLQMDADDKPLARRLLPVLERKAGRLLVNGYPTGVEVCDAMVHGGPFPATSNPAVT 480 QLTAT+Q DA D+ A LL VLERKAGR+L NGYPTGVEV AMVHGGPFPATS+ T Sbjct: 419 QLTATVQADAGDRAEAGSLLTVLERKAGRVLFNGYPTGVEVSYAMVHGGPFPATSDTRAT 478 Query: 481 SVGATAIERFLRPVCYQDFPDDLLPEGLQESNPLAIPRLRDGK 523 SVGA+AIERFLRPVCYQ+ P +LLP LQ+ NPL + RL DG+ Sbjct: 479 SVGASAIERFLRPVCYQNVPAELLPPALQDGNPLKVWRLTDGQ 521 Lambda K H 0.320 0.137 0.396 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 908 Number of extensions: 42 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 525 Length of database: 525 Length adjustment: 35 Effective length of query: 490 Effective length of database: 490 Effective search space: 240100 Effective search space used: 240100 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory