Align Alpha-ketoglutaric semialdehyde dehydrogenase 3; alphaKGSA dehydrogenase 3; 2,5-dioxovalerate dehydrogenase 3; KGSADH-III; EC 1.2.1.26 (characterized)
to candidate RR42_RS23090 RR42_RS23090 2,5-dioxovalerate dehydrogenase
Query= SwissProt::Q08IB7 (530 letters) >FitnessBrowser__Cup4G11:RR42_RS23090 Length = 533 Score = 668 bits (1724), Expect = 0.0 Identities = 346/524 (66%), Positives = 400/524 (76%) Query: 1 MQLTGHLLIGQSAIAGQNGTLHAIAAATGEPLDPAFGGASLHDLDTACALADDAFDTYRD 60 M LTG LLIG+ ++ G +G + AI A+GE L PAFGGA+ LD ACALA AFD YR+ Sbjct: 1 MNLTGELLIGRQSVRGTHGEIRAIDPASGETLAPAFGGATRAQLDQACALAAQAFDGYRE 60 Query: 61 TSLEARAAFLDAIGRHIMALGDELIERCVIETGLPRARIEGERGRTVGQLALFASLVRDG 120 T L RAA L+ I +++ALGD LI RCV E+GLPRARIEGE GRT+ QL LFA +VR G Sbjct: 61 TPLAQRAALLEKIAANLLALGDALIARCVSESGLPRARIEGELGRTMSQLRLFAGVVRRG 120 Query: 121 GFLDARIDPARPERKPLPRVDLRLRNIAVGPVAVFGASNFPLAFSVAGGDTASALAAGCP 180 FL RIDPA+P+R PLPRVDLRLR+IA+GPVAVFGASNFPLAFSVAGGDTASALAAGCP Sbjct: 121 DFLGLRIDPAQPQRMPLPRVDLRLRHIALGPVAVFGASNFPLAFSVAGGDTASALAAGCP 180 Query: 181 VIVKAHSAHPGTSALVGRAIQQAARECGMPAGVFSLLFDASREIGQALVADPRIKAVGFT 240 V+VKAH AHPGTS LVGRAIQ+A E G+P G FSLLFD+ EI Q LV+D RIKAVGFT Sbjct: 181 VVVKAHPAHPGTSELVGRAIQKAVEELGLPEGTFSLLFDSGLEIAQGLVSDHRIKAVGFT 240 Query: 241 GSRRGGVALMHIAAARPEPIPVYAEMSSINPVLLLPAALDARHDAIAPQFVASLTLGAGQ 300 GSR GG ALM +AAAR EPIPVYAEMSSINPVLL P AL R DAI F ASLTLGAGQ Sbjct: 241 GSRAGGTALMQLAAARSEPIPVYAEMSSINPVLLFPHALGNRADAIGKAFAASLTLGAGQ 300 Query: 301 FCTNPGLVLAVDGPALRAFEEAAAAAVRAAPAQTMLTPHIHASYEQGVAALRDHAAVELL 360 FCTNPGL+LAVDGP L F AA AA+ PA TMLTP IH +Y GV L H V + Sbjct: 301 FCTNPGLILAVDGPDLERFLAAAEAAIAQIPASTMLTPGIHRAYGAGVETLGCHPQVSTV 360 Query: 361 AQGAEGNRLQARAALLATSAEAFITHPELRDEVFGPASLIVRCPDADTLHRVLKSLEGQL 420 A+G G + Q +AAL +T+A+AF+ H LR EVFG ASL+VRCPD T+ RV++SLEGQL Sbjct: 361 ARGQAGAQYQGQAALFSTTAQAFLEHEALRAEVFGAASLVVRCPDLATMQRVVESLEGQL 420 Query: 421 TIAAHLADGDAPLFAALRPLLERKAGRILVNGFGTGVEVGHAMVHGGPFPATSDTRTTSV 480 T A H+ + D + P LER+ GRILVNGF TGVEV HAMVHGGP+P+TSD R+TSV Sbjct: 421 TAAIHIDEADYDTARSFLPALERRVGRILVNGFATGVEVSHAMVHGGPYPSTSDGRSTSV 480 Query: 481 GARAIERFLRPVSYQDLPDALLPEAIRSGNPLNVPQRIDGVPAP 524 G+ AI RFLRPV YQD+P ALLP+A+R+GNPL + R+DG P Sbjct: 481 GSLAIARFLRPVCYQDMPAALLPQALRAGNPLGLAVRVDGEMQP 524 Lambda K H 0.321 0.136 0.398 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 906 Number of extensions: 40 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 530 Length of database: 533 Length adjustment: 35 Effective length of query: 495 Effective length of database: 498 Effective search space: 246510 Effective search space used: 246510 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.9 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory