Align Alpha-ketoglutaric semialdehyde dehydrogenase; alphaKGSA dehydrogenase; 2,5-dioxovalerate dehydrogenase; EC 1.2.1.26 (characterized)
to candidate RR42_RS27350 RR42_RS27350 aldehyde dehydrogenase
Query= SwissProt::P42236 (488 letters) >FitnessBrowser__Cup4G11:RR42_RS27350 Length = 486 Score = 408 bits (1048), Expect = e-118 Identities = 216/483 (44%), Positives = 305/483 (63%), Gaps = 3/483 (0%) Query: 4 ITEQNTYLNFINGEWVKSQSGDMVKVENPADVNDIVGYVQNSTAEDVERAVTAANEAKTA 63 + + + + N+INGEW KS SG NPAD DIVG Q STA+D + AV AA A A Sbjct: 3 VAKTDEFNNYINGEWSKSASGRTFDNVNPADTADIVGRFQASTADDAQAAVAAAAAAFDA 62 Query: 64 WRKLTGAERGQYLYKTADIMEQRLEEIAACATREMGKTLPEAKGETARGIAILRYYAGEG 123 W+K ++R + L AD +E E+IA TRE GK L +K E R +R+YA EG Sbjct: 63 WKKTPISKRAKILNGAADYLEANAEQIAEELTREEGKALNLSKDEVLRSAQTIRFYAVEG 122 Query: 124 MRKTGDVIPSTDKDALMFTTRVPLGVVGVISPWNFPVAIPIWKMAPALVYGNTVVIKPAT 183 +G+ P D D ++++ R PLGVV VISPWNFPV+IP K+APAL+ GNTVV KP++ Sbjct: 123 QSFSGETYPQDDPDMIVYSQREPLGVVTVISPWNFPVSIPARKIAPALIAGNTVVFKPSS 182 Query: 184 ETAVTCAKIIACFEEAGLPAGVINLVTGPGSVVGQGLAEHDGVNAVTFTGSNQVGKIIGQ 243 + ++ ++ F EAG+P GV+N +TG VG + E V A++FTGS G+ I Sbjct: 183 DAPLSGYRLAQAFVEAGIPKGVLNFITGRAGDVGAAITEAPAVRAISFTGSTAAGQHI-H 241 Query: 244 AALARGAKYQLEMGGKNPVIVADDADLEAAAEAVITGAFRSTGQKCTATSRVIVQSGIYE 303 +++ + Q+E+GGKNP+IV +DADL+ A + I G +GQ CT TSRV+V + + Sbjct: 242 RSVSLSTRTQMELGGKNPLIVMEDADLDRAVDLTIKGGLSLSGQACTGTSRVLVMASVKA 301 Query: 304 RFKEKLLQRTKDITIGDSLKEDVWMGPIASKNQLDNCLSYIEKGKQEGASLLIGGEKLEN 363 + EKLL + K + IG + + +GP+A++ QL+ L Y+E GK E A+ L GG++L Sbjct: 302 AYTEKLLAKVKTLKIGSGMTPGMDVGPLATRKQLETVLGYVEAGKSE-ATHLCGGDRLGG 360 Query: 364 GKYQNGYYVQPAIFDNVTSEMTIAQEEIFGPVIALIKVDSIEEALNIANDVKFGLSASIF 423 Y G+YV PA+F VT +M IA+EEIFGPVIA+I+V S +A+ AND ++GLSA+I Sbjct: 361 EPYDKGFYVSPAVFTGVTQQMRIAREEIFGPVIAIIEVSSYADAIAKANDTEYGLSAAIV 420 Query: 424 TENIGRMLSFIDEIDAGLVRINAESAGVELQAPFGGMKQSSSHS-REQGEAAKDFFTAIK 482 T N F +I +G V+IN + G + APFGG+KQSS+ + RE G A +F+T IK Sbjct: 421 TSNPRYAHDFAHDIQSGTVKINRTTTGNLINAPFGGLKQSSTSTFRESGRAGLEFYTQIK 480 Query: 483 TVF 485 TV+ Sbjct: 481 TVY 483 Lambda K H 0.315 0.132 0.374 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 570 Number of extensions: 26 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 488 Length of database: 486 Length adjustment: 34 Effective length of query: 454 Effective length of database: 452 Effective search space: 205208 Effective search space used: 205208 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.5 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory