Align Alpha-ketoglutaric semialdehyde dehydrogenase 1; alphaKGSA dehydrogenase 1; 2,5-dioxovalerate dehydrogenase 1; 2-oxoglutarate semialdehyde dehydrogenase 1; KGSADH-I; Succinate-semialdehyde dehydrogenase [NAD(+)]; SSDH; EC 1.2.1.26; EC 1.2.1.24 (characterized)
to candidate RR42_RS29720 RR42_RS29720 aldehyde dehydrogenase
Query= SwissProt::Q1JUP4 (481 letters) >FitnessBrowser__Cup4G11:RR42_RS29720 Length = 476 Score = 482 bits (1240), Expect = e-140 Identities = 241/473 (50%), Positives = 325/473 (68%), Gaps = 1/473 (0%) Query: 6 YTDTQLLIDGEWVDAASG-KTIDVVNPATGKPIGRVAHAGIADLDRALAAAQSGFEAWRK 64 Y + L I+GE++ K+ DV NPAT + +GR+ HA IADL A+A +QS F WRK Sbjct: 2 YPELFLYINGEFIGVGGQRKSEDVTNPATREVLGRLPHATIADLAHAVATSQSAFLKWRK 61 Query: 65 VPAHERAATMRKAAALVRERADAIAQLMTQEQGKPLTEARVEVLSAADIIEWFADEGRRV 124 +R+ +R+AA+L RERAD IAQ +T +QGKPL EAR EV++ AD +W A+E RR+ Sbjct: 62 SSPLQRSEILRRAASLARERADDIAQAITLDQGKPLAEARAEVVTCADHADWHAEECRRI 121 Query: 125 YGRIVPPRNLGAQQTVVKEPVGPVAAFTPWNFPVNQVVRKLSAALATGCSFLVKAPEETP 184 YGR++PPR+ +Q VV+EPVG AFTPWNFP NQ +RK++AA+ GC+ ++K PE++P Sbjct: 122 YGRVIPPRDTAVRQIVVREPVGVCVAFTPWNFPFNQAIRKITAAIGAGCAIVLKGPEDSP 181 Query: 185 ASPAALLRAFVDAGVPAGVIGLVYGDPAEISSYLIPHPVIRKVTFTGSTPVGKQLASLAG 244 ++ AL + F DAG+P GV+ +V+G P E+S +LI HP++RKV+FTGS VGK+LA+LAG Sbjct: 182 SAIVALAKLFHDAGLPPGVLNIVWGVPHEVSDFLIQHPLVRKVSFTGSVDVGKKLAALAG 241 Query: 245 LHMKRATMELGGHAPVIVAEDADVALAVKAAGGAKFRNAGQVCISPTRFLVHNSIRDEFT 304 HMKRATMELGGHAPVIV +DADV AV+ K RNAGQVC++PTR V + I +F Sbjct: 242 HHMKRATMELGGHAPVIVCDDADVDSAVQVTMRMKLRNAGQVCVAPTRLFVQSGIYTKFR 301 Query: 305 RALVKHAEGLKVGNGLEEGTTLGALANPRRLTAMASVIDNARKVGASIETGGERIGSEGN 364 +++ E ++G G++ TT+G LA+ RR+ M + +A+ G ++ TGG G+ Sbjct: 302 DQMIEAFETARLGPGIDSSTTMGPLAHARRVKEMERFVADAKARGGNVLTGGFAPELGGS 361 Query: 365 FFAPTVIANVPLDADVFNNEPFGPVAAIRGFDKLEEAIAEANRLPFGLAGYAFTRSFANV 424 FFAPT++ N+ AD+ EPFGP+A + FD L+EAIA AN LPFGLA +AFT + Sbjct: 362 FFAPTLVDNLDDTADLMQKEPFGPIAPLAKFDTLDEAIARANSLPFGLAAFAFTERTRSA 421 Query: 425 HLLTQRLEVGMLWINQPATPWPEMPFGGVKDSGYGSEGGPEALEPYLVTKSVT 477 H L LE GM+ IN PE PFGG+KDSG GSEGG E + YL TK VT Sbjct: 422 HRLATELEAGMVNINHAGMALPETPFGGIKDSGMGSEGGTETFDGYLTTKFVT 474 Lambda K H 0.318 0.134 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 640 Number of extensions: 24 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 481 Length of database: 476 Length adjustment: 34 Effective length of query: 447 Effective length of database: 442 Effective search space: 197574 Effective search space used: 197574 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory