Align Alpha-ketoglutaric semialdehyde dehydrogenase 1; alphaKGSA dehydrogenase 1; 2,5-dioxovalerate dehydrogenase 1; 2-oxoglutarate semialdehyde dehydrogenase 1; KGSADH-I; Succinate-semialdehyde dehydrogenase [NAD(+)]; SSDH; EC 1.2.1.26; EC 1.2.1.24 (characterized)
to candidate RR42_RS34925 RR42_RS34925 aldehyde dehydrogenase
Query= SwissProt::Q1JUP4 (481 letters) >FitnessBrowser__Cup4G11:RR42_RS34925 Length = 475 Score = 489 bits (1260), Expect = e-143 Identities = 239/472 (50%), Positives = 321/472 (68%) Query: 6 YTDTQLLIDGEWVDAASGKTIDVVNPATGKPIGRVAHAGIADLDRALAAAQSGFEAWRKV 65 Y D L IDGE+V + DV+NPAT + +G++ HA DLDRALAAAQ FE+W+K Sbjct: 2 YQDLALYIDGEFVKGGDRREQDVINPATQELLGKLPHANRGDLDRALAAAQRAFESWKKT 61 Query: 66 PAHERAATMRKAAALVRERADAIAQLMTQEQGKPLTEARVEVLSAADIIEWFADEGRRVY 125 ER+ +R+ A L RERA I + +T +QGKPL EA EV+ A+ EW A+E RR+Y Sbjct: 62 SPLERSKILRRVAELTRERAKDIGRNITLDQGKPLAEAIGEVMICAEHAEWHAEECRRIY 121 Query: 126 GRIVPPRNLGAQQTVVKEPVGPVAAFTPWNFPVNQVVRKLSAALATGCSFLVKAPEETPA 185 GR++PPR +Q VV+EP+G AAFTPWNFP NQ +RK+ +A+ GC+ ++K PE++P+ Sbjct: 122 GRVIPPRQPNVRQIVVREPIGVCAAFTPWNFPFNQAIRKMVSAIGAGCTLILKGPEDSPS 181 Query: 186 SPAALLRAFVDAGVPAGVIGLVYGDPAEISSYLIPHPVIRKVTFTGSTPVGKQLASLAGL 245 + AL + F DAG+P GV+ +V+G P EIS+YLI P++RK++FTGS PVGKQLA+LAG Sbjct: 182 AVVALAQLFHDAGLPPGVLNIVWGVPGEISTYLIESPIVRKISFTGSVPVGKQLAALAGA 241 Query: 246 HMKRATMELGGHAPVIVAEDADVALAVKAAGGAKFRNAGQVCISPTRFLVHNSIRDEFTR 305 HMKR TMELGGH+PV+V +DAD+ A + K RNAGQVC+SPTRF V D+F Sbjct: 242 HMKRVTMELGGHSPVLVFDDADIEPAAEMLARFKLRNAGQVCVSPTRFYVQEKAYDKFLA 301 Query: 306 ALVKHAEGLKVGNGLEEGTTLGALANPRRLTAMASVIDNARKVGASIETGGERIGSEGNF 365 + +KVG+GL++GT +G LA+ RR+ +M +D+A G + GG+RIG +G F Sbjct: 302 RFTEVIGSIKVGDGLDDGTQMGPLAHERRIASMEQFLDDANHRGGKVVAGGKRIGDKGFF 361 Query: 366 FAPTVIANVPLDADVFNNEPFGPVAAIRGFDKLEEAIAEANRLPFGLAGYAFTRSFANVH 425 FAPTV+ ++P DA + +EPFGPVA + F +EE + AN LPFGLA Y FT S Sbjct: 362 FAPTVVTDLPDDAKLMVDEPFGPVAPVTRFKDVEEVLRRANSLPFGLASYVFTNSLKTAT 421 Query: 426 LLTQRLEVGMLWINQPATPWPEMPFGGVKDSGYGSEGGPEALEPYLVTKSVT 477 +++ LE GM+ IN E PFGG+KDSG GSEGG E + YLVTK +T Sbjct: 422 VVSNGLEAGMVNINHFGMALAETPFGGIKDSGIGSEGGQETFDGYLVTKFIT 473 Lambda K H 0.318 0.134 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 704 Number of extensions: 31 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 481 Length of database: 475 Length adjustment: 34 Effective length of query: 447 Effective length of database: 441 Effective search space: 197127 Effective search space used: 197127 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory