Align aldehyde dehydrogenase (NAD+) (EC 1.2.1.3); L-aminoadipate-semialdehyde dehydrogenase (EC 1.2.1.31) (characterized)
to candidate RR42_RS24555 RR42_RS24555 succinate-semialdehyde dehydrogenase
Query= BRENDA::P49419 (539 letters) >FitnessBrowser__Cup4G11:RR42_RS24555 Length = 494 Score = 221 bits (563), Expect = 5e-62 Identities = 140/459 (30%), Positives = 225/459 (49%), Gaps = 10/459 (2%) Query: 60 GGRGEVITTYCPANNEPIARVRQASVADYEETVKKAREAWKIWADIPAPKRGEIVRQIGD 119 GGR +T PA E +ARV S A+ E + + +A +W + +R +++R D Sbjct: 36 GGRSFAVTN--PATGEILARVASLSGAEVESAITASAQAQAVWQRRSSHERAKLLRAWFD 93 Query: 120 ALREKIQVLGSLVSLEMGKILVEGVGEVQEYVDICDYAVGLSRMIGGPILPSERSGHALI 179 + L +++ E GK L E GE+ ++ ++ I G + P ++ ++ Sbjct: 94 LMIANADDLALIMTSEQGKPLAEARGEILYAASFVEWFAEEAKRIYGDVAPHPQTDKRIL 153 Query: 180 EQWNPVGLVGIITAFNFPVAVYGWNNAIAMICGNVCLWKGAPTTSLISVAVTKIIAKVLE 239 PVG+ IT +NFP A+ A A+ G + + A T L ++A +A + E Sbjct: 154 VIRQPVGVCAAITPWNFPAAMITRKVAPALAAGCSIIVRPADLTPLTALA----LAVLAE 209 Query: 240 DNKLPGAICSLTCGGA-DIGTAMAKDERVNLLSFTGSTQVGKQVGLMVQERFGRSLLELG 298 +P + + CG + +IG + V LSFTGST+VG+ + R LELG Sbjct: 210 RAGIPAGVLQMVCGPSREIGAVLTASPVVRKLSFTGSTEVGRVLMSQSSPTIKRLSLELG 269 Query: 299 GNNAIIAFEDADLSLVVPSALFAAVGTAGQRCTTARRLFIHESIHDEVVNRLKKAYAQIR 358 GN I F+DADL + A+ + +GQ C A R + + I+D V L + A+++ Sbjct: 270 GNAPFIVFDDADLDAAIEGAMASKYRNSGQTCVCANRFLVQDGIYDRFVEALVRRVAELK 329 Query: 359 VGNPWDPNVLYGPLHTKQAVSMFLGAVEEAKKEGGTVVYGGKVMDRPGNYVEPTIVTGLG 418 VGN +P V GPL K A +++A +G VV GGK G + EPT++ G Sbjct: 330 VGNGVEPGVQQGPLIQKSACEHLQAMIDDAVGKGAKVVVGGKGHALGGTFFEPTVIAGAT 389 Query: 419 HDASIAHTETFAPILYVFKFKNEEEVFAWNNEVKQGLSSSIFTKDLGRIFRWLGPKGSDC 478 D +A E F P+ VF+F++E E A N+ + GL++ ++T+D RI W + + Sbjct: 390 PDMRVAREELFGPVAPVFRFRDEAEAIALANDTEYGLAAYLYTRDNARI--WRVGEALEY 447 Query: 479 GIVNVNIPTSGAEIGGAFGGEKHTGGGRESGSDAWKQYM 517 G+V +N E+ FGG K +G GRE +Y+ Sbjct: 448 GMVGLNTGLISNEV-APFGGVKQSGLGREGSRYGIDEYL 485 Lambda K H 0.318 0.136 0.417 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 678 Number of extensions: 26 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 539 Length of database: 494 Length adjustment: 35 Effective length of query: 504 Effective length of database: 459 Effective search space: 231336 Effective search space used: 231336 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory