Align lysine-specific permease (characterized)
to candidate RR42_RS11100 RR42_RS11100 gamma-aminobutyrate permease
Query= CharProtDB::CH_003129 (489 letters) >lcl|FitnessBrowser__Cup4G11:RR42_RS11100 RR42_RS11100 gamma-aminobutyrate permease Length = 509 Score = 668 bits (1724), Expect = 0.0 Identities = 321/475 (67%), Positives = 384/475 (80%) Query: 9 EAPGLRRELKARHLTMIAIGGSIGTGLFVASGATISQAGPGGALLSYMLIGLMVYFLMTS 68 E L+R+LKARHLTMIAIGG++GTGLFVASGA+ISQAGPGGALL Y LIGLMVY LMTS Sbjct: 14 EHDDLQRKLKARHLTMIAIGGAVGTGLFVASGASISQAGPGGALLMYCLIGLMVYCLMTS 73 Query: 69 LGELAAYMPVSGSFATYGQNYVEEGFGFALGWNYWYNWAVTIAVDLVAAQLVMSWWFPDT 128 LGELA +MPV+GSF TY YVEEGFGFALGW+YW++ AVTIAV+L AAQLVM +WFP Sbjct: 74 LGELAVHMPVAGSFVTYSALYVEEGFGFALGWSYWFSLAVTIAVELAAAQLVMQYWFPHV 133 Query: 129 PGWIWSALFLGVIFLLNYISVRGFGEAEYWFSLIKVTTVIVFIIVGVLMIIGIFKGAQPA 188 G +WSA FL ++F LN SVRGFGEAEYWF+LIKV T+++F+ G++MI GI +G + Sbjct: 134 SGVVWSAGFLLLMFGLNAFSVRGFGEAEYWFALIKVATILIFLAAGLMMIFGIMQGGPQS 193 Query: 189 GWSNWTIGEAPFAGGFAAMIGVAMIVGFSFQGTELIGIAAGESEDPAKNIPRAVRQVFWR 248 GW N+T+G+APF GG AM GVAMI GFSFQGTE +G+AAGE+ DPA+ IPRA+RQ FWR Sbjct: 194 GWHNFTLGDAPFVGGIPAMFGVAMIAGFSFQGTETVGVAAGEAADPARTIPRAIRQTFWR 253 Query: 249 ILLFYVFAILIISLIIPYTDPSLLRNDVKDISVSPFTLVFQHAGLLSAAAVMNAVILTAV 308 ILLFYV AILII ++IPYTDPSLLRNDV DI VSPF LVF+HAGL AA +MNAV+LTA+ Sbjct: 254 ILLFYVLAILIIGVLIPYTDPSLLRNDVTDIGVSPFALVFRHAGLAFAAGLMNAVVLTAL 313 Query: 309 LSAGNSGMYASTRMLYTLACDGKAPRIFAKLSRGGVPRNALYATTVIAGLCFLTSMFGNQ 368 LSAG S MYASTR+LY LA G+APR A+LS GVP AL+ATT + LCFL+S+FG++ Sbjct: 314 LSAGTSSMYASTRILYGLAVSGRAPRALARLSANGVPYVALFATTAVGALCFLSSLFGDK 373 Query: 369 TVYLWLLNTSGMTGFIAWLGIAISHYRFRRGYVLQGHDINDLPYRSGFFPLGPIFAFILC 428 VYLWLLNTSGMTGFIAWLGIAISHYRFRRG V QG+ +DL YRS +P GP+FA +LC Sbjct: 374 AVYLWLLNTSGMTGFIAWLGIAISHYRFRRGLVHQGYKPSDLAYRSPLYPFGPLFAIVLC 433 Query: 429 LIITLGQNYEAFLKDTIDWGGVAATYIGIPLFLIIWFGYKLIKGTHFVRYSEMKF 483 ++I LGQNY+AF W + TYIG+PLFL++W GY+L+K T + Y +M F Sbjct: 434 VVIVLGQNYQAFSDVRGRWLEIVGTYIGVPLFLVLWLGYRLVKKTRLIDYEDMPF 488 Lambda K H 0.327 0.142 0.451 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 916 Number of extensions: 33 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 489 Length of database: 509 Length adjustment: 34 Effective length of query: 455 Effective length of database: 475 Effective search space: 216125 Effective search space used: 216125 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory