GapMind for catabolism of small carbon sources

 

Alignments for a candidate for manMFS in Cupriavidus basilensis 4G11

Align D-mannose and D-mannitol transporter (characterized)
to candidate RR42_RS00375 RR42_RS00375 MFS transporter

Query= reanno::pseudo5_N2C3_1:AO356_28540
         (430 letters)



>FitnessBrowser__Cup4G11:RR42_RS00375
          Length = 432

 Score =  178 bits (451), Expect = 3e-49
 Identities = 126/417 (30%), Positives = 196/417 (47%), Gaps = 19/417 (4%)

Query: 8   LIIIMLFLAGVINYLDRSALSVAAPFIQKDYGLSTGEMGMIFSSFFVGYAAFNFIGGWAA 67
           + ++MLFL   INY+DR++LSVA P I K++ LS    G+I SSFF  YA     GG  A
Sbjct: 21  IFLMMLFLIA-INYIDRASLSVAMPLIAKEFDLSPTMQGLILSSFFWTYAVMQIPGGMLA 79

Query: 68  DRYGAKTTLLLAMVLWSLFSGLTVLTVGFASLVLIRILFGMGEGPLSVTTSKMVNNWYTP 127
           D+Y  +  +  A V W  F  +  +     +L+L R+  G  E P+     K+   W T 
Sbjct: 80  DKYKPRIVIATATVFWGAFQAMAAVCTSAGALLLTRLGLGAAEAPIYPAGGKLNAIWMTQ 139

Query: 128 KRRARAIGASMSGTPLGGAISGPVVGFIAVTYG-WKISFIIIMLIGLVWAAV--WFKFVK 184
             R R       G PLG A+   ++ ++    G W+++F++   +G V A +  W+ +V+
Sbjct: 140 NERGRGATLLDGGAPLGAALGAIIITWLITALGSWRLAFVVAG-VGTVLAGMLAWY-YVR 197

Query: 185 ERP-EGEGAEDI----LRAEGQGELAAQPV---FPLRFYLKQPTVLFTSLAFFSYNYTLF 236
             P E  G  ++    + A    E  A+P         +LK  +V   +  +  +N   +
Sbjct: 198 NSPREHRGVNELEASYIEAAQASEHRAEPANLSGRSLDFLKYRSVWCMATGWMCFNSVFY 257

Query: 237 FFLTWFPSYLTMAHGLNVKDMSIATVIPWVLGFLGLALGGFISDFVFKKTGRMMFSRKVV 296
             LTW P+YL   HG ++K M  A+ I +  GF+G  +GG+I+D      G      + +
Sbjct: 258 GLLTWMPNYLNKVHGFDIKQMGGASFIIFFSGFIGELIGGWIADKWKAAGGAPNLVMRTL 317

Query: 297 LVTCLLACAVCIACAGMVTTLYPAVILVALAVFFLYLTGAIYWAIIQDTVPAARVGGVSG 356
                +   V I     V      V L++  +FFL   G +YW I        +VG + G
Sbjct: 318 FGIAAVVATVSIFSVAYVKDPVVVVALLSSTLFFLRWCG-LYWCIPSILGTRNKVGVLGG 376

Query: 357 FMHFLANTSGIVGPTLTGFLVQFTGSFTSA---FLLAGLLTVIGAVCVARYVKPLSV 410
            M+   N  GI  P + G +VQFTGS+  A   F  AG+  +I +  +  Y K L V
Sbjct: 377 IMNLGGNIGGITVPIIVGMIVQFTGSYFLALMFFAAAGVGLLISSTAI-DYEKKLPV 432


Lambda     K      H
   0.329    0.142    0.439 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 533
Number of extensions: 35
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 430
Length of database: 432
Length adjustment: 32
Effective length of query: 398
Effective length of database: 400
Effective search space:   159200
Effective search space used:   159200
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 15 ( 7.1 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 40 (21.8 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory