Align m-Inositol ABC transporter, ATPase component (itaA) (characterized)
to candidate RR42_RS03360 RR42_RS03360 sugar ABC transporter ATP-binding protein
Query= reanno::pseudo3_N2E3:AO353_21385 (521 letters) >FitnessBrowser__Cup4G11:RR42_RS03360 Length = 537 Score = 394 bits (1012), Expect = e-114 Identities = 228/504 (45%), Positives = 318/504 (63%), Gaps = 15/504 (2%) Query: 27 LLEIINVSKGFPGVVALSDVQLRVRPGSVLALMGENGAGKSTLMKIIAGIYQPD-AGELR 85 LL + N+ K FPGV AL V+L G V ALMGENGAGKSTLMKI++G Y D GE Sbjct: 10 LLALRNICKTFPGVRALRKVELTAYAGEVHALMGENGAGKSTLMKILSGAYTADPGGECH 69 Query: 86 LRGKPVTFDTPLAALQAGIAMIHQELNLMPHMSIAENIWIGREQLNGFHMIDHREMHRCT 145 + G+ V D P +A G+A+I+QEL+L P++S+AENI++GR L ++ +M R Sbjct: 70 IDGQRVQIDGPQSARDLGVAVIYQELSLAPNLSVAENIYLGRA-LQRRGLVARGDMVRAC 128 Query: 146 AQLLERLRINLDPEEQVGNLSIAERQMVEIAKAVSYDSDILIMDEPTSAITDKEVAHLFS 205 A L RL + P V +LSIA+RQ+VEIA+AV +++ IL+MDEPT+ ++ E LF+ Sbjct: 129 APTLARLGADFSPAANVASLSIAQRQLVEIARAVHFEARILVMDEPTTPLSTHETDRLFA 188 Query: 206 IIADLKAQGKGIIYITHKMNEVFSIADEVAVFRDGAYIGLQRADSMDGDSLISMMVGREL 265 +I L+ +G I+YI+H+M E+ +AD V V RDG ++G + +L+ MMVGR+L Sbjct: 189 LIRQLRGEGMAILYISHRMAEIDELADRVTVLRDGCFVGTLDRAHLSQAALVKMMVGRDL 248 Query: 266 SQLFPVREKPI--GDLLMSVRDLRLDGVFKGVSFDLHAGEILGIAGLMGSGRTNVAEAIF 323 S + ++++SVRD+ KG SFDL AGE+LG+AGL+G+GRT +A +F Sbjct: 249 SGFYTKTHGQAVEREVMLSVRDVADGRRVKGCSFDLRAGEVLGLAGLVGAGRTELARLVF 308 Query: 324 GITPSDGGEICL-----DGQPVRI--SDPHMAIEKGFALLTEDRKLSGLFPCLSVLENME 376 G GE+ + G V + P AI+ G A LTEDRKL GLF SV EN+ Sbjct: 309 GADARTRGEVRIANPAGSGGLVTLPAGGPRQAIDAGIAYLTEDRKLQGLFLDQSVHENIN 368 Query: 377 MAVLPHYA-GNGFIQQKALRALCEDMCKKLRVKTPSLEQCIDTLSGGNQQKALLARWLMT 435 + V A G G + + A R + L ++ + + LSGGNQQK +L+R L Sbjct: 369 LIVAARDALGLGRLNRTAARRRTTEAIDTLGIRVAHAQVNVGALSGGNQQKVMLSRLLEI 428 Query: 436 NPRILILDEPTRGIDVGAKAEIYRLISYLASEGMAVIMISSELPEVLGMSDRVMVMHEGD 495 PR+LILDEPTRG+D+GAK+EIYRLI+ LA G+A++MISSELPEV+G+ DRV+VM EG Sbjct: 429 QPRVLILDEPTRGVDIGAKSEIYRLINALAQSGVAILMISSELPEVVGLCDRVLVMREGT 488 Query: 496 LMGTL---DRSEATQERVMQLASG 516 L G + + TQER++ LA+G Sbjct: 489 LAGEVRPAGSAAETQERIIALATG 512 Lambda K H 0.321 0.137 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 681 Number of extensions: 31 Number of successful extensions: 11 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 521 Length of database: 537 Length adjustment: 35 Effective length of query: 486 Effective length of database: 502 Effective search space: 243972 Effective search space used: 243972 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory