Align D-mannonate oxidoreductase; EC 1.1.1.57; Fructuronate reductase (uncharacterized)
to candidate RR42_RS34965 RR42_RS34965 dioxygenase
Query= curated2:P39160 (486 letters) >FitnessBrowser__Cup4G11:RR42_RS34965 Length = 511 Score = 353 bits (906), Expect = e-102 Identities = 205/491 (41%), Positives = 278/491 (56%), Gaps = 20/491 (4%) Query: 11 VARPSWDHSRLESRIVHLGCGAFHRAHQALYTHHLLESTDSD-----WGICEVNLMPGND 65 V RP + RL IVHLG GAFHRAHQA T L + +D WGI V+L + Sbjct: 18 VLRPRYARERLRGGIVHLGIGAFHRAHQAAVTQAALHADAADAHSLDWGIVGVSLRRPDT 77 Query: 66 RVLIENLKKQQLLYTVA-----EKGAESTELKIIGSMKEALHPEIDGCEGILNAMARPQT 120 R + L QQ LYT+A + G+ +L++IG++ L D + +L +A Sbjct: 78 R---DALAPQQGLYTLALRGVRDDGSRFVQLQVIGAVMAVL-VAADDPDAVLERIAHEDA 133 Query: 121 AIVSLTVTEKGYCADAASGQLDLNNPLIKHDLENPTAPKSAIGYIVEALRLRREKGLKAF 180 IVSLTVTEKGYC D A+G L+ ++P I HDL + AP +AIGY+ L+ R +GL Sbjct: 134 RIVSLTVTEKGYCHDPATGTLNFSDPGIAHDLLHAGAPVTAIGYLARGLQRRMARGLPPL 193 Query: 181 TVMSCDNVRENGHVAKVAVLGLAQARDPQLAAWIEENVTFPCTMVDRIVPAATPETLQEI 240 T++SCDN+ NG + +L D L W+ E FP MVDRIVP T + I Sbjct: 194 TLLSCDNIAANGDTLRGLLLAFCARVDGALHDWVAERCGFPNAMVDRIVPKTTVDDAARI 253 Query: 241 ADQLGVYDPCAIACEPFRQWVIEDNFVNGRPDWDKVGAQFVADVVPFEMMKLRMLNGSHS 300 + LGV D + EPF QWV+ED FV GRP W+ GAQFV PFE +K R++NGSHS Sbjct: 254 SAALGVEDAWPVVGEPFLQWVMEDRFVAGRPRWEAGGAQFVEHAHPFETLKHRLVNGSHS 313 Query: 301 FLAYLGYLGGYETIADTVTNPAYRKAAFALMMQEQAPTLSMPEGTDLNAYATLLIERFSN 360 +AYLG + G+ T + PA R +M QE PTL G D AY L+ RF+N Sbjct: 314 TMAYLGMVAGWATTDRAIAVPAMRALVAGMMEQEMQPTLPALPGLDTAAYRRDLLARFAN 373 Query: 361 PSLRHRTWQIAMDGSQKLPQRLLDPVRLHLQNGGSWRHLALGVAGWMRYTQGVDEQGNAI 420 P+L+H+T QIAMDGSQK+PQRLL P+R L+ G + LALGVAGW+ + +G DE G Sbjct: 374 PALQHKTSQIAMDGSQKIPQRLLAPIRERLRAGAPFPRLALGVAGWLHFLRGRDEHGAEY 433 Query: 421 DVVDPMLAEFQKINAQYQG-----ADRVKALLGLSGIFADDLPQNADFVGAVTAAYQQLC 475 + DP+ + + + A+ + ADR+ A+ + +F DL + FV + + L Sbjct: 434 RIEDPLASSLRALLAEAEARHAREADRIAAIASFTPVFG-DLAASRVFVETLATQTRMLR 492 Query: 476 ERGARECVAAL 486 ERG +AA+ Sbjct: 493 ERGVLATIAAV 503 Lambda K H 0.320 0.135 0.408 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 676 Number of extensions: 37 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 486 Length of database: 511 Length adjustment: 34 Effective length of query: 452 Effective length of database: 477 Effective search space: 215604 Effective search space used: 215604 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory