Align Benzoyl-CoA oxygenase component B; Benzoyl-CoA 2,3-dioxygenase subunit B; Benzoyl-CoA dioxygenase oxygenase component; EC 1.14.13.208 (characterized)
to candidate RR42_RS07505 RR42_RS07505 benzoyl-CoA oxygenase
Query= SwissProt::Q9AIX7 (473 letters) >lcl|FitnessBrowser__Cup4G11:RR42_RS07505 RR42_RS07505 benzoyl-CoA oxygenase Length = 474 Score = 708 bits (1828), Expect = 0.0 Identities = 334/472 (70%), Positives = 389/472 (82%) Query: 2 INYSERIPNNVNLNENKTLQRALEQWQPSFLNWWDDMGPENSSNYDVYLRTAVSVDPKGW 61 I+YS++IPNNVNL++++ LQRALE WQP+FL+WW DMGPE S +DVYLRTAVSVDP GW Sbjct: 3 IDYSQKIPNNVNLSDDRALQRALEHWQPAFLDWWRDMGPEGSHQHDVYLRTAVSVDPAGW 62 Query: 62 ADFGYVKMHDYRWGIFLAPQEGEKKITFGEHKGQDVWQEVPGEYRSTLRRIIVTQGDTEP 121 A F +VKM DYRWGIFL P + ++I FGEHKG+ WQEVPGE+R+ LRRIIVTQGDTEP Sbjct: 63 AHFDHVKMPDYRWGIFLQPADPARRIHFGEHKGEAAWQEVPGEHRANLRRIIVTQGDTEP 122 Query: 122 ASVEQQRHLGLTAPSLYDLRNLFQVNVEEGRHLWAMVYLLHAHFGRDGREEGEALLERRS 181 ASVEQQRHLG+T PSLYDLRNLFQVNVEEGRHLWAMVYLLH HFGRDGREE EALL RRS Sbjct: 123 ASVEQQRHLGMTCPSLYDLRNLFQVNVEEGRHLWAMVYLLHRHFGRDGREEAEALLGRRS 182 Query: 182 GDEDNPRILTAFNEKTPDWLSFFMFTFITDRDGKFQLASLAESAFDPLARTCKFMLTEEA 241 GDEDNPRIL AFNE+TPDWL+FFMFT TDRDGKFQL +LAES+FDPLART +FMLTEEA Sbjct: 183 GDEDNPRILGAFNERTPDWLAFFMFTHFTDRDGKFQLCALAESSFDPLARTTRFMLTEEA 242 Query: 242 HHLFVGESGIARVIQRTCEVMKELGTDDPAKLRAAGVIDLPTLQKYLNFHYSVTSDLYGA 301 HH+FVGESGI+RVIQRTCEVM+E DPA +RAAGVIDL T+Q+YLNFHYSVT DL+GA Sbjct: 243 HHMFVGESGISRVIQRTCEVMRERDIQDPADVRAAGVIDLDTIQRYLNFHYSVTIDLFGA 302 Query: 302 EISSNAATYYTNGLKGRFEEEKIGDDHKLQNSEYEVMDVAGDKILTRHVPALSALNERLR 361 + SSNAAT+Y+ GLKGRFEE K GDDH L+ Y ++DV ++ R VP L+ALNE LR Sbjct: 303 DQSSNAATFYSAGLKGRFEEGKRGDDHVLKGEVYRILDVTDGRLGEREVPMLNALNEVLR 362 Query: 362 DDWITDVQAGVDRWNRIPAKFGFDFRFTLPHKGFHRKIGMFADVHVSPDGRLISEAEWTH 421 DD++ D GV RWN++ K G R T+PHK F+RKIG A+VHVSP G L++EA+W Sbjct: 363 DDYVKDTLGGVARWNKVIEKHGIALRMTVPHKAFNRKIGSLANVHVSPAGELLTEAQWQA 422 Query: 422 QHKNWLPTESDRLYVHSLMGRCLEPGKFANWIAAPARGINNQPVNFEYVRFN 473 + WLPT DR +V SLMGR EPGK+ANWIA P G+N QP++FEYVRFN Sbjct: 423 GEREWLPTGEDRAFVASLMGRVTEPGKYANWIAPPVVGVNRQPMDFEYVRFN 474 Lambda K H 0.320 0.137 0.428 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 851 Number of extensions: 19 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 473 Length of database: 474 Length adjustment: 33 Effective length of query: 440 Effective length of database: 441 Effective search space: 194040 Effective search space used: 194040 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory