Align 4-hydroxybutyrate-CoA ligase (EC 6.2.1.40) (characterized)
to candidate RR42_RS25360 RR42_RS25360 acyl-CoA synthetase
Query= BRENDA::A4YDR9 (549 letters) >lcl|FitnessBrowser__Cup4G11:RR42_RS25360 RR42_RS25360 acyl-CoA synthetase Length = 554 Score = 376 bits (966), Expect = e-108 Identities = 212/530 (40%), Positives = 300/530 (56%), Gaps = 5/530 (0%) Query: 11 GVDPTGSWYSVLTPLLFLERAGKYFKDKTAVVYRDSRYTYSTFYDNVMVQASALMRRGFS 70 G+D + + LTPL FL+R + + D+TA+++ R ++ + ASAL++RG Sbjct: 9 GLDRRAANHMPLTPLHFLDRCAEQYPDRTAIIHGPVRQSWKVTRERCRQLASALVKRGVG 68 Query: 71 REDKLSFISRNRPEFLESFFGVPYAGGVLVPINFRLSPKEMAYIINHSDSKFVVVDEPYL 130 R D +S ++ N P +E+ G+P +G VL IN RL + +I+ H + K + VD + Sbjct: 69 RGDTVSILAPNTPAMVEAHHGIPLSGAVLNAINCRLDADGVRFIVAHGECKVLFVDREFS 128 Query: 131 NSLLEVKDQIKAEIILLEDPDNPSASETARKEVRMTYRELVKGGSRDPLPIPAKEEYSMI 190 E + ++++ D + + M Y + ++ G D + +E++ I Sbjct: 129 ALAAEALQGLPNAPLVIDIAD--ALAPAGEPIGAMEYEQFLREGDIDFPGVWPDDEWNAI 186 Query: 191 TLYYTSGTTGLPKGVMHHHRGAFLNAMAEVLEHQMDLNSVYLWTLPMFHAASWGFSWATV 250 L YTSGTT PKGV+ HRGA+L +M ++ + M YLWTLPMFHA W FSWA Sbjct: 187 ALNYTSGTTSDPKGVVPSHRGAYLMSMLQLTDWGMPRAPKYLWTLPMFHANGWCFSWAVT 246 Query: 251 AVGATNVCLDKVDYPLIYRLVEKERVTHMCAAPTVYVNLADYMKRNNLKFSNRVHMLVAG 310 A T+VCL KV I+ +E H CAAP V +LA + FS+ V + AG Sbjct: 247 AAAGTHVCLRKVTAANIFSAIEAYGADHFCAAPIVLSSLATATQEERRPFSHVVRIRTAG 306 Query: 311 AAPAPATLKAMQEIGGYMCHVYGLTETYGPHSICEWRREWDSLPLEEQAKLKARQGIPYV 370 + P + LKA+ E G + HVYG+TE G W+ +E+A+L ARQG Sbjct: 307 SPPPASVLKAVIEQGFDVEHVYGITEASGTPVSSYANPAWNEKSGDEKARLMARQGNRAA 366 Query: 371 SFE-MDVFDANG-KPVPWDGKTIGEVVMRGHNVALGYYKNPEKTAESFRDGWFHSGDAAV 428 E + V D + + VPWDG T GE+++RG+ V GY KNPE T +F GWFH+GD AV Sbjct: 367 GLEGLRVADPDTMESVPWDGTTQGELLLRGNIVMKGYLKNPEATEAAFAGGWFHTGDLAV 426 Query: 429 VHPDGYIEIVDRFKDLINTGGEKVSSILVEKTLMEIPGVKAVAVYGTPDEKWGEVVTARI 488 VHPDGY++I DR KD+I +GGE +SS+ VE L + P V AV P KWGE A I Sbjct: 427 VHPDGYVQITDRSKDVIISGGENISSVEVEDVLHQHPAVLIAAVVAQPHPKWGESPCAFI 486 Query: 489 ELQEGVKL-TEEEVIKFCKERLAHFECPKIVEFGPIPMTATGKMQKYVLR 537 EL+ GV TE E+I FC+ RLAH++CP V +G +P T TGK+QKY LR Sbjct: 487 ELKNGVAAPTEAEIIAFCRSRLAHYKCPTRVVYGALPKTGTGKIQKYRLR 536 Lambda K H 0.319 0.136 0.411 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 735 Number of extensions: 29 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 549 Length of database: 554 Length adjustment: 36 Effective length of query: 513 Effective length of database: 518 Effective search space: 265734 Effective search space used: 265734 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory