Align NAD(P)-dependent succinate-semialdehyde dehydrogenase (EC 1.2.1.16) (characterized)
to candidate RR42_RS21375 RR42_RS21375 succinate-semialdehyde dehydrogenase
Query= metacyc::MONOMER-15736 (480 letters) >FitnessBrowser__Cup4G11:RR42_RS21375 Length = 488 Score = 684 bits (1766), Expect = 0.0 Identities = 342/484 (70%), Positives = 393/484 (81%), Gaps = 5/484 (1%) Query: 1 MQLKDAQLFRQQAFIDGAWVDADNGQTIKVNNPATGEILGTVPKMGAAETRRAIEAADKA 60 MQLKD L R QAFI G W AD+G T V NPA G ++GTVP MGAAET RAIEAA A Sbjct: 1 MQLKDPTLLRSQAFIGGQWQSADSGATFPVTNPADGSLIGTVPLMGAAETTRAIEAARVA 60 Query: 61 LPAWRALTAKERATKLRRWYELLIENQDDLGRLMTLEQGKPLAEAKGEIAYAASFIEWFA 120 AWR TA+ERA LR WY+L++ N DDL LMT EQGKPLAEA+GE YAASF+EWFA Sbjct: 61 QAAWRRKTARERAQVLRAWYDLMLANADDLAVLMTTEQGKPLAEARGEAVYAASFLEWFA 120 Query: 121 EEAKRIYGDVIPGHQPDKRLIVIKQPIGVTAAITPWNFPAAMITRKAGPALAAGCTMVIK 180 E+AKR++GDV+ DKRL+V+K+P+GV AAITPWNFP AMITRKAGPALAAGC MV+K Sbjct: 121 EQAKRVHGDVLATPASDKRLLVVKEPVGVCAAITPWNFPLAMITRKAGPALAAGCAMVLK 180 Query: 181 PASQTPFSALALVELAHRAGIPKGVLSVVTGSAG---DIGGELTSNPIVRKLSFTGSTEI 237 PA TP SALAL LA RAG+P G+LSVVTG A +IG ELT +P+VRKLSFTGSTE+ Sbjct: 181 PAEDTPLSALALALLAERAGLPAGLLSVVTGDAASSIEIGAELTGSPVVRKLSFTGSTEV 240 Query: 238 GRQLMAECAKDIKKVSLELGGNAPFIVFDDADLDKAVEGAIISKYRNNGQTCVCANRLYI 297 GR LM + A IKK+SLELGGNAPFIVFDDADLD AVEGA+ SKYRN GQTCVCANRLY+ Sbjct: 241 GRILMRQSAPTIKKLSLELGGNAPFIVFDDADLDAAVEGAMASKYRNAGQTCVCANRLYV 300 Query: 298 QDSVYDAFAEKLKAAVAKLKIGNGLEEGTTTGPLIDEKAVAKVQEHIADALKKGATLLAG 357 D VYDAFA+KL AAV LK+G+GLE G GPLI+E AVAKV++HIADAL KGA LL G Sbjct: 301 HDKVYDAFAQKLVAAVKTLKVGHGLEPGVQQGPLINEDAVAKVEQHIADALGKGARLLTG 360 Query: 358 GK--SMEGNFFEPTILVNVPKDAAVAKEETFGPLAPLFRFKDEAEVIAMSNDTEFGLASY 415 GK + G FFEPT+L NV D VAK+ETFGPLAPLFRF + EV+ M+NDTEFGLASY Sbjct: 361 GKRHDLGGTFFEPTVLANVTPDMVVAKQETFGPLAPLFRFTSDEEVVNMANDTEFGLASY 420 Query: 416 FYARDLGRVFRVAEALEYGMVGVNTGLISNEVAPFGGIKASGLGREGSKYGIEDYLEIKY 475 F++RD+GR++RVAEALEYGMVG+NTGLISNEVAPFGG+K SGLGREG+ YGIE+YLE+KY Sbjct: 421 FFSRDIGRIWRVAEALEYGMVGINTGLISNEVAPFGGVKQSGLGREGASYGIEEYLEVKY 480 Query: 476 LCLG 479 LC+G Sbjct: 481 LCMG 484 Lambda K H 0.317 0.135 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 726 Number of extensions: 16 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 480 Length of database: 488 Length adjustment: 34 Effective length of query: 446 Effective length of database: 454 Effective search space: 202484 Effective search space used: 202484 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory