Align NAD(P)-dependent succinate-semialdehyde dehydrogenase (EC 1.2.1.16) (characterized)
to candidate RR42_RS21760 RR42_RS21760 succinate-semialdehyde dehydrogenase
Query= metacyc::MONOMER-15736 (480 letters) >FitnessBrowser__Cup4G11:RR42_RS21760 Length = 482 Score = 702 bits (1813), Expect = 0.0 Identities = 349/480 (72%), Positives = 404/480 (84%), Gaps = 4/480 (0%) Query: 1 MQLKDAQLFRQQAFIDGAWVDADNGQTIKVNNPATGEILGTVPKMGAAETRRAIEAADKA 60 +QL+D L RQQ +IDG W DA + I V NPATGE +G VP +GA ETR+AIEAA++A Sbjct: 2 LQLQDPSLLRQQCYIDGRWTDAQ--RHIDVTNPATGERVGQVPLLGADETRQAIEAANRA 59 Query: 61 LPAWRALTAKERATKLRRWYELLIENQDDLGRLMTLEQGKPLAEAKGEIAYAASFIEWFA 120 LPAWRA TAKER+ LR+W+ELL+ NQDDL R+MT EQGKP AEA+GEI YAASFIEWFA Sbjct: 60 LPAWRARTAKERSALLRKWFELLLANQDDLARIMTAEQGKPFAEARGEIGYAASFIEWFA 119 Query: 121 EEAKRIYGDVIPGHQPDKRLIVIKQPIGVTAAITPWNFPAAMITRKAGPALAAGCTMVIK 180 EE KR+YG+ IP ++R++V K+P+GV AAITPWNFPAAMITRKAGPALAAGCTMV+K Sbjct: 120 EEGKRVYGETIPAPVSNQRIVVTKEPVGVCAAITPWNFPAAMITRKAGPALAAGCTMVVK 179 Query: 181 PASQTPFSALALVELAHRAGIPKGVLSVVTGSAGDIGGELTSNPIVRKLSFTGSTEIGRQ 240 PASQTP +ALA+V LA RAGIP GVLSVVTGSA IGGEL+SNP+VRKL+FTGSTE+GR Sbjct: 180 PASQTPLTALAMVALAERAGIPAGVLSVVTGSAAAIGGELSSNPLVRKLTFTGSTEVGRT 239 Query: 241 LMAECAKDIKKVSLELGGNAPFIVFDDADLDKAVEGAIISKYRNNGQTCVCANRLYIQDS 300 LMA+ A IKKVS+ELGGNAPFIVF+DADLD AVEGAI+SKYRN GQTCVCANRLY+ Sbjct: 240 LMAQTASTIKKVSMELGGNAPFIVFEDADLDAAVEGAIVSKYRNAGQTCVCANRLYVHSK 299 Query: 301 VYDAFAEKLKAAVAKLKIGNGLEEGTTTGPLIDEKAVAKVQEHIADALKKGATLLAGGK- 359 VYDAFAEKL AAV LK+GNG+E+G GPLID KAV KV+EHI DA+ KGA +L GGK Sbjct: 300 VYDAFAEKLVAAVRALKVGNGMEDGVRIGPLIDGKAVTKVEEHITDAISKGARVLQGGKR 359 Query: 360 -SMEGNFFEPTILVNVPKDAAVAKEETFGPLAPLFRFKDEAEVIAMSNDTEFGLASYFYA 418 ++ +FFEPT+L +V VA+EETFGPLAPLFRF+ E EV+AM+NDTEFGLASYFYA Sbjct: 360 HALGQSFFEPTVLADVTPGMLVAREETFGPLAPLFRFETEDEVVAMANDTEFGLASYFYA 419 Query: 419 RDLGRVFRVAEALEYGMVGVNTGLISNEVAPFGGIKASGLGREGSKYGIEDYLEIKYLCL 478 RDLGRV+RV+E LEYGMVGVNTGLISNEVAPFGG+K SG+GREGS YGIEDYL IKY C+ Sbjct: 420 RDLGRVWRVSERLEYGMVGVNTGLISNEVAPFGGVKQSGVGREGSHYGIEDYLVIKYTCM 479 Lambda K H 0.317 0.135 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 705 Number of extensions: 14 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 480 Length of database: 482 Length adjustment: 34 Effective length of query: 446 Effective length of database: 448 Effective search space: 199808 Effective search space used: 199808 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory