Align succinate-semialdehyde dehydrogenase (NADP+) [EC: 1.2.1.16] (characterized)
to candidate RR42_RS24555 RR42_RS24555 succinate-semialdehyde dehydrogenase
Query= reanno::MR1:200453 (482 letters) >FitnessBrowser__Cup4G11:RR42_RS24555 Length = 494 Score = 620 bits (1598), Expect = 0.0 Identities = 304/480 (63%), Positives = 373/480 (77%) Query: 3 LNDPSLLRQQCYINGQWCDANSKETVAITNPATGAVIACVPVMGQAETQAAIAAAEAALP 62 L DPSLL + ++ W +A+ + A+TNPATG ++A V + AE ++AI A+ A Sbjct: 15 LRDPSLLETRAWLASGWQEASGGRSFAVTNPATGEILARVASLSGAEVESAITASAQAQA 74 Query: 63 AWRALTAKERGAKLRRWFELLNENSDDLALLMTSEQGKPLTEAKGEVTYAASFIEWFAEE 122 W+ ++ ER LR WF+L+ N+DDLAL+MTSEQGKPL EA+GE+ YAASF+EWFAEE Sbjct: 75 VWQRRSSHERAKLLRAWFDLMIANADDLALIMTSEQGKPLAEARGEILYAASFVEWFAEE 134 Query: 123 AKRIYGDTIPGHQGDKRIMVIKQPVGVTAAITPWNFPAAMITRKAAPALAAGCTMVVKPA 182 AKRIYGD P Q DKRI+VI+QPVGV AAITPWNFPAAMITRK APALAAGC+++V+PA Sbjct: 135 AKRIYGDVAPHPQTDKRILVIRQPVGVCAAITPWNFPAAMITRKVAPALAAGCSIIVRPA 194 Query: 183 PQTPFTALALAVLAERAGIPAGVFSVITGDAIAIGNEMCTNPIVRKLSFTGSTNVGIKLM 242 TP TALALAVLAERAGIPAGV ++ G + IG + +P+VRKLSFTGST VG LM Sbjct: 195 DLTPLTALALAVLAERAGIPAGVLQMVCGPSREIGAVLTASPVVRKLSFTGSTEVGRVLM 254 Query: 243 AQCAPTLKKLSLELGGNAPFIVFDDANIDAAVEGAMIAKYRNAGQTCVCANRIYVQAGVY 302 +Q +PT+K+LSLELGGNAPFIVFDDA++DAA+EGAM +KYRN+GQTCVCANR VQ G+Y Sbjct: 255 SQSSPTIKRLSLELGGNAPFIVFDDADLDAAIEGAMASKYRNSGQTCVCANRFLVQDGIY 314 Query: 303 DEFAEKLSMAVAKLKVGEGIIAGVTTGPLINAAAVEKVQSHLEDAIKKGATVLAGGKVHE 362 D F E L VA+LKVG G+ GV GPLI +A E +Q+ ++DA+ KGA V+ GGK H Sbjct: 315 DRFVEALVRRVAELKVGNGVEPGVQQGPLIQKSACEHLQAMIDDAVGKGAKVVVGGKGHA 374 Query: 363 LGGNFFEPTVLTNADKSMRVAREETFGPLAPLFKFNDVDDVIKQANDTEFGLAAYFYGRD 422 LGG FFEPTV+ A MRVAREE FGP+AP+F+F D + I ANDTE+GLAAY Y RD Sbjct: 375 LGGTFFEPTVIAGATPDMRVAREELFGPVAPVFRFRDEAEAIALANDTEYGLAAYLYTRD 434 Query: 423 ISLVWKVAESLEYGMVGVNTGLISTEVAPFGGMKSSGLGREGSKYGIEEYLEIKYICMSV 482 + +W+V E+LEYGMVG+NTGLIS EVAPFGG+K SGLGREGS+YGI+EYLEIKY+C V Sbjct: 435 NARIWRVGEALEYGMVGLNTGLISNEVAPFGGVKQSGLGREGSRYGIDEYLEIKYLCAQV 494 Lambda K H 0.318 0.133 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 702 Number of extensions: 22 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 482 Length of database: 494 Length adjustment: 34 Effective length of query: 448 Effective length of database: 460 Effective search space: 206080 Effective search space used: 206080 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory