Align Monocarboxylic acid transporter (characterized)
to candidate RR42_RS06400 RR42_RS06400 acetate permease
Query= SwissProt::Q8NS49 (551 letters) >lcl|FitnessBrowser__Cup4G11:RR42_RS06400 RR42_RS06400 acetate permease Length = 546 Score = 409 bits (1052), Expect = e-118 Identities = 221/506 (43%), Positives = 317/506 (62%), Gaps = 27/506 (5%) Query: 13 SEGVGNPILNISVFVVFIIVTMTVVLRVGKSTSESTDFYTGGASFSGTQNGLAIAGDYLS 72 S G G ++ I++F++F+ T+ V +S D Y G + QNG AIAGDY+S Sbjct: 26 SVGQGMNVIAIAMFLMFVAATLVVTRWAARSNHSVADHYAAGGKITALQNGWAIAGDYMS 85 Query: 73 AASFLGIVGAISLNGYDGFLYSIGFFVAWLVALLLVAEPLRNVGRFTMADVLSFRLRQKP 132 AAS LGI + +GYDG +YSIGF +W + L L+AEPLRN+GRFT+ADV+S+RLRQ+P Sbjct: 86 AASLLGISALVFTSGYDGLIYSIGFLASWPIILFLIAEPLRNLGRFTLADVVSYRLRQRP 145 Query: 133 VRVAAACGTLAVTLFYLIAQMAGAGSLVSVLLDIHEFKWQAVVVGIVGIVMIAYVLLGGM 192 +R +A ++ + L YL++QM GAG LV +L F + A VV +VG++M+ YV GGM Sbjct: 146 IRAFSASSSIVIVLLYLVSQMVGAGKLVELLFG---FSYTAAVV-LVGVLMVVYVFFGGM 201 Query: 193 KGTTYVQMIKAVLLVGGVAIMTVLTFVKVSGGLTTLLNDAVEKHAASDYAATKGYDPTQI 252 TT++Q+IKAVLL+ G A M + + L L A+E H +AA I Sbjct: 202 LATTWIQIIKAVLLLAGAAFMAFMVMSRFGFSLNALFAQAIEAH--GKHAA--------I 251 Query: 253 LEPGLQYGATLTTQLDFISLALALCLGTAGLPHVLMRFYTVPTAKEARKSVTWAIVLIGA 312 + P G ++ + +SL LAL GTAGLPH+LMRF+TV K ARKS+ +A ++G Sbjct: 252 MRP----GGLVSDPVSAVSLGLALIFGTAGLPHILMRFFTVGDVKAARKSILYATGIVGI 307 Query: 313 FYLMTLVLGYGAAALVGPDRVIAAP-----GAANAAAPLLAFELGGSIFMALISAVAFAT 367 Y + +++G+G ALV D P G N A LA +GG++F+ I AVAF+T Sbjct: 308 GYALIIIIGFGTIALVASDPAYHTPAGAVIGGVNMVAVHLAHAVGGNLFLGFICAVAFST 367 Query: 368 VLAVVAGLAITASAAVGHDIYNAVIRNGQSTEAEQVRVSRITVVVIGLISIVLGILAMTQ 427 +LAVVAGL + S+A+ HD+Y V+R G +T+ E++RVSR+T +V+G++SI+LGIL Q Sbjct: 368 ILAVVAGLTLAGSSAISHDLYAKVLRQGNATDKEEMRVSRMTTLVLGVLSILLGILFEKQ 427 Query: 428 NVAFLVALAFAVAASANLPTILYSLYWKKFNTTGAVAAIYTGLISALLLIFLSPAVSGND 487 +AF+V+L F++AAS+N P +L S+YW+ T GAV GL+SA++L LSP V Sbjct: 428 TIAFIVSLTFSIAASSNFPVLLLSIYWRGLTTRGAVVGGSLGLLSAVVLTVLSPTV---- 483 Query: 488 SAMVPGADWAIFPLKNPGLVSIPLAF 513 V G AI+P + P L S+ +AF Sbjct: 484 WVQVLGHARAIYPYEYPALFSMLVAF 509 Lambda K H 0.324 0.138 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 656 Number of extensions: 32 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 551 Length of database: 546 Length adjustment: 36 Effective length of query: 515 Effective length of database: 510 Effective search space: 262650 Effective search space used: 262650 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.0 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.5 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory