Align ABC-type sugar transport system, ATP-binding protein; EC 3.6.3.17 (characterized, see rationale)
to candidate RR42_RS03360 RR42_RS03360 sugar ABC transporter ATP-binding protein
Query= uniprot:A0A0C4Y5F6 (540 letters) >FitnessBrowser__Cup4G11:RR42_RS03360 Length = 537 Score = 1031 bits (2665), Expect = 0.0 Identities = 537/537 (100%), Positives = 537/537 (100%) Query: 4 MSDTSTKAPLLALRNICKTFPGVRALRKVELTAYAGEVHALMGENGAGKSTLMKILSGAY 63 MSDTSTKAPLLALRNICKTFPGVRALRKVELTAYAGEVHALMGENGAGKSTLMKILSGAY Sbjct: 1 MSDTSTKAPLLALRNICKTFPGVRALRKVELTAYAGEVHALMGENGAGKSTLMKILSGAY 60 Query: 64 TADPGGECHIDGQRVQIDGPQSARDLGVAVIYQELSLAPNLSVAENIYLGRALQRRGLVA 123 TADPGGECHIDGQRVQIDGPQSARDLGVAVIYQELSLAPNLSVAENIYLGRALQRRGLVA Sbjct: 61 TADPGGECHIDGQRVQIDGPQSARDLGVAVIYQELSLAPNLSVAENIYLGRALQRRGLVA 120 Query: 124 RGDMVRACAPTLARLGADFSPAANVASLSIAQRQLVEIARAVHFEARILVMDEPTTPLST 183 RGDMVRACAPTLARLGADFSPAANVASLSIAQRQLVEIARAVHFEARILVMDEPTTPLST Sbjct: 121 RGDMVRACAPTLARLGADFSPAANVASLSIAQRQLVEIARAVHFEARILVMDEPTTPLST 180 Query: 184 HETDRLFALIRQLRGEGMAILYISHRMAEIDELADRVTVLRDGCFVGTLDRAHLSQAALV 243 HETDRLFALIRQLRGEGMAILYISHRMAEIDELADRVTVLRDGCFVGTLDRAHLSQAALV Sbjct: 181 HETDRLFALIRQLRGEGMAILYISHRMAEIDELADRVTVLRDGCFVGTLDRAHLSQAALV 240 Query: 244 KMMVGRDLSGFYTKTHGQAVEREVMLSVRDVADGRRVKGCSFDLRAGEVLGLAGLVGAGR 303 KMMVGRDLSGFYTKTHGQAVEREVMLSVRDVADGRRVKGCSFDLRAGEVLGLAGLVGAGR Sbjct: 241 KMMVGRDLSGFYTKTHGQAVEREVMLSVRDVADGRRVKGCSFDLRAGEVLGLAGLVGAGR 300 Query: 304 TELARLVFGADARTRGEVRIANPAGSGGLVTLPAGGPRQAIDAGIAYLTEDRKLQGLFLD 363 TELARLVFGADARTRGEVRIANPAGSGGLVTLPAGGPRQAIDAGIAYLTEDRKLQGLFLD Sbjct: 301 TELARLVFGADARTRGEVRIANPAGSGGLVTLPAGGPRQAIDAGIAYLTEDRKLQGLFLD 360 Query: 364 QSVHENINLIVAARDALGLGRLNRTAARRRTTEAIDTLGIRVAHAQVNVGALSGGNQQKV 423 QSVHENINLIVAARDALGLGRLNRTAARRRTTEAIDTLGIRVAHAQVNVGALSGGNQQKV Sbjct: 361 QSVHENINLIVAARDALGLGRLNRTAARRRTTEAIDTLGIRVAHAQVNVGALSGGNQQKV 420 Query: 424 MLSRLLEIQPRVLILDEPTRGVDIGAKSEIYRLINALAQSGVAILMISSELPEVVGLCDR 483 MLSRLLEIQPRVLILDEPTRGVDIGAKSEIYRLINALAQSGVAILMISSELPEVVGLCDR Sbjct: 421 MLSRLLEIQPRVLILDEPTRGVDIGAKSEIYRLINALAQSGVAILMISSELPEVVGLCDR 480 Query: 484 VLVMREGTLAGEVRPAGSAAETQERIIALATGAAAAAPAWVDVPLPGAGNATGITLH 540 VLVMREGTLAGEVRPAGSAAETQERIIALATGAAAAAPAWVDVPLPGAGNATGITLH Sbjct: 481 VLVMREGTLAGEVRPAGSAAETQERIIALATGAAAAAPAWVDVPLPGAGNATGITLH 537 Lambda K H 0.320 0.136 0.382 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1001 Number of extensions: 28 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 540 Length of database: 537 Length adjustment: 35 Effective length of query: 505 Effective length of database: 502 Effective search space: 253510 Effective search space used: 253510 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory