GapMind for catabolism of small carbon sources

 

Aligments for a candidate for acn in Cupriavidus basilensis 4G11

Align aconitate hydratase (EC 4.2.1.3) (characterized)
to candidate RR42_RS23515 RR42_RS23515 bifunctional aconitate hydratase 2/2-methylisocitrate dehydratase

Query= BRENDA::P36683
         (865 letters)



>lcl|FitnessBrowser__Cup4G11:RR42_RS23515 RR42_RS23515 bifunctional
           aconitate hydratase 2/2-methylisocitrate dehydratase
          Length = 861

 Score = 1280 bits (3312), Expect = 0.0
 Identities = 637/862 (73%), Positives = 731/862 (84%), Gaps = 6/862 (0%)

Query: 1   MLEEYRKHVAERAAEGIAPKPLDANQMAALVELLKNPPAGEEEFLLDLLTNRVPPGVDEA 60
           MLE YR HVAERAA GI P PL A Q A L+ELLK+PPAGEE+ L+DL+T+RVP GVD+A
Sbjct: 1   MLENYRAHVAERAALGIPPLPLTAKQTAELIELLKSPPAGEEQVLVDLITHRVPAGVDDA 60

Query: 61  AYVKAGFLAAIAKGEAKSPLLTPEKAIELLGTMQGGYNIHPLIDALDDAKLAPIAAKALS 120
           A VKA +LAA+A G+    L++  KA ELLGTM GGYNI PLI+ LDDA++ P+AA+AL 
Sbjct: 61  AKVKASYLAAVALGKEACALISRAKAAELLGTMLGGYNISPLIELLDDAEIGPVAAEALK 120

Query: 121 HTLLMFDNFYDVEEKAKAGNEYAKQVMQSWADAEWFLNRPALAEKLTVTVFKVTGETNTD 180
            TLLMFD F+DV+EKA  GN  AK V+QSWADAEWF +RP + + LTVTVFKVTGETNTD
Sbjct: 121 KTLLMFDAFHDVKEKADKGNAIAKSVLQSWADAEWFTSRPEVPQSLTVTVFKVTGETNTD 180

Query: 181 DLSPAPDAWSRPDIPLHALAMLKNAREGIEPDQPGVVGPIKQIEALQQKGFPLAYVGDVV 240
           DLSPAPDA +RPDIPLHALAMLKNAR GI P++ G  GP+K IE+L++KG  +AYVGDVV
Sbjct: 181 DLSPAPDATTRPDIPLHALAMLKNARPGITPEEDGKRGPVKFIESLKEKGNLVAYVGDVV 240

Query: 241 GTGSSRKSATNSVLWFMGDDIPHVPNKRGGGLCLGGKIAPIFFNTMEDAGALPIEVDVSN 300
           GTGSSRKSATNSVLWF G+DIP VPNKR GG+CLG KIAPIF+NTMEDAGALPIE+DVS 
Sbjct: 241 GTGSSRKSATNSVLWFTGEDIPFVPNKRFGGVCLGSKIAPIFYNTMEDAGALPIELDVSQ 300

Query: 301 LNMGDVIDVYPYKGEVRNHETGELLATFELKTDVLIDEVRAGGRIPLIIGRGLTTKAREA 360
           + MGDV+++ PY G+   +  G+++A F +K+DVL DEVRAGGRIPLI+GRGLT KAREA
Sbjct: 301 MEMGDVVELRPYDGKALKN--GQVIAEFTVKSDVLFDEVRAGGRIPLIVGRGLTAKAREA 358

Query: 361 LGLPHSDVFRQAKDVAESDRGFSLAQKMVGRACGV---KGIRPGAYCEPKMTSVGSQDTT 417
           LGL  S +FR   + A++ RGF+LAQKMVGRACG+   KGIRPG YCEPKMTSVGSQDTT
Sbjct: 359 LGLAPSTLFRLPHNPADTGRGFTLAQKMVGRACGLPEGKGIRPGTYCEPKMTSVGSQDTT 418

Query: 418 GPMTRDELKDLACLGFSADLVMQSFCHTAAYPKPVDVNTHHTLPDFIMNRGGVSLRPGDG 477
           GPMTRDELKDLACLGFSADLVMQSFCHTAAYPKPVDV THHTLP FI  RGG+SLRPGDG
Sbjct: 419 GPMTRDELKDLACLGFSADLVMQSFCHTAAYPKPVDVKTHHTLPQFISTRGGISLRPGDG 478

Query: 478 VIHSWLNRMLLPDTVGTGGDSHTRFPIGISFPAGSGLVAFAAATGVMPLDMPESVLVRFK 537
           VIHSWLNRMLLPDTVGTGGDSHTRFPIGISFPAGSGLVAFAAATGVMPLDMPESVLVRFK
Sbjct: 479 VIHSWLNRMLLPDTVGTGGDSHTRFPIGISFPAGSGLVAFAAATGVMPLDMPESVLVRFK 538

Query: 538 GKMQPGITLRDLVHAIPLYAIKQGLLTVEKKGKKNIFSGRILEIEGLPDLKVEQAFELTD 597
           GKMQPG+TLRDLV+AIPLYAIK GLLTV K+GKKNIFSGR+LEIEGLPDLKVEQAFEL+D
Sbjct: 539 GKMQPGVTLRDLVNAIPLYAIKSGLLTVAKQGKKNIFSGRVLEIEGLPDLKVEQAFELSD 598

Query: 598 ASAERSAAGCTIKLNKEPIIEYLNSNIVLLKWMIAEGYGDRRTLERRIQGMEKWLANPEL 657
           ASAERSAAGC+++LNKEPIIEY+NSNI LLKWMIAEGY D R+L RRIQ ME WLA+P+L
Sbjct: 599 ASAERSAAGCSVRLNKEPIIEYINSNITLLKWMIAEGYQDPRSLSRRIQAMEAWLADPKL 658

Query: 658 LEADADAEYAAVIDIDLADIKEPILCAPNDPDDARPLSAVQGEKIDEVFIGSCMTNIGHF 717
           LE DADAEYAAVI+IDLAD+ EPI+  PNDPDD + LS V G KIDEVFIGSCMTNIGHF
Sbjct: 659 LEPDADAEYAAVIEIDLADVHEPIVACPNDPDDVKTLSEVAGAKIDEVFIGSCMTNIGHF 718

Query: 718 RAAGKLLDAHKGQLPTRLWVAPPTRMDAAQLTEEGYYSVFGKSGARIEIPGCSLCMGNQA 777
           RAA KLL+  K  +P +LWVAPPT+MDA QLTEEG+Y VFG +GAR E+PGCSLCMGNQA
Sbjct: 719 RAASKLLEG-KRDIPVKLWVAPPTKMDAKQLTEEGHYGVFGTAGARTEMPGCSLCMGNQA 777

Query: 778 RVADGATVVSTSTRNFPNRLGTGANVFLASAELAAVAALIGKLPTPEEYQTYVAQVDKTA 837
           +V +GATV+STSTRNFPNRLG   NV+L SAELAA+ + +G++PT EEY + +  +    
Sbjct: 778 QVREGATVMSTSTRNFPNRLGKNTNVYLGSAELAAICSRLGRIPTKEEYMSDMGVLATNG 837

Query: 838 VDTYRYLNFNQLSQYTEKADGV 859
              Y+YLNF+++  +   AD V
Sbjct: 838 DQIYKYLNFDKIEDFKGVADTV 859


Lambda     K      H
   0.317    0.136    0.400 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 2045
Number of extensions: 73
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 865
Length of database: 861
Length adjustment: 42
Effective length of query: 823
Effective length of database: 819
Effective search space:   674037
Effective search space used:   674037
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 56 (26.2 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory