Align malonate-semialdehyde dehydrogenase (acetylating) (EC 1.2.1.18) (characterized)
to candidate RR42_RS01580 RR42_RS01580 methylmalonate-semialdehyde dehydrogenase
Query= reanno::pseudo5_N2C3_1:AO356_23175 (500 letters) >FitnessBrowser__Cup4G11:RR42_RS01580 Length = 505 Score = 770 bits (1987), Expect = 0.0 Identities = 367/494 (74%), Positives = 424/494 (85%) Query: 7 VGHYIDGRIQASDNARLSNVFNPATGAVQARVALAEPSTVDAAVASALAAFPAWSEQSSL 66 + HYI G ++A+ + R ++VFNPATGAV RVAL VDAAVA+A AAFPAWSE + L Sbjct: 12 IAHYIGGTVRAASSDRFADVFNPATGAVAGRVALGSAQDVDAAVAAAHAAFPAWSETAPL 71 Query: 67 RRSRVMFKFKELLDRHHDELAQIISREHGKVLSDAHGEVTRGIEIVEYACGAPNLLKTDF 126 +R+R++FKFKELLDRHHD+LA +I+REHGKV SDA GEVTRG+EIVE+ACG PNLLKTDF Sbjct: 72 KRARILFKFKELLDRHHDDLAALITREHGKVFSDAKGEVTRGVEIVEFACGIPNLLKTDF 131 Query: 127 SDNIGGGIDNWNLRQPLGVCAGVTPFNFPVMVPLWMIPLALVAGNCFILKPSERDPSASL 186 +DNIGGGIDNWNLRQPLGV AG+TPFNFPVMVP+WM P+AL GN F+LKPSERDPS SL Sbjct: 132 TDNIGGGIDNWNLRQPLGVVAGITPFNFPVMVPMWMFPVALACGNTFVLKPSERDPSPSL 191 Query: 187 LMARLLTEAGLPDGVFNVVQGDKVAVDALLQHPDIEAISFVGSTPIAEYIHQQGTAQGKR 246 L+A LL +AGLPDGVFNVVQG K AVDALL H D++A+SFVGSTPIAEYI+ +GT +GKR Sbjct: 192 LIADLLKQAGLPDGVFNVVQGGKEAVDALLAHKDVQALSFVGSTPIAEYIYTEGTRRGKR 251 Query: 247 VQALGGAKNHMIVMPDADLDQAADALIGAAYGSAGERCMAISIAVAVGDVGDELIAKLLP 306 VQALGGAKNH++VMPDADLDQA DALIGAAYGSAGERCMAIS+AVAVGDV D+L+ +L Sbjct: 252 VQALGGAKNHLVVMPDADLDQAVDALIGAAYGSAGERCMAISVAVAVGDVADKLVPRLAE 311 Query: 307 RIDQLKIGNGQQPGTDMGPLVTAEHKAKVEGFIDAGVAEGARLIVDGRGFKVPGAEQGFF 366 R LKI NG Q +MGPLVTA HKAKVEG+I GV EGA+L+ DGRG KV G E GF+ Sbjct: 312 RARSLKIRNGMQDDAEMGPLVTAAHKAKVEGYIAKGVEEGAKLVTDGRGHKVDGHENGFY 371 Query: 367 VGATLFDQVTAEMSIYQQEIFGPVLGIVRVPDFATAVALINAHEFGNGVSCFTRDGGIAR 426 VG TLFD VT +M+IY++EIFGPVL +VRV D A AV LIN HE+GNGVSC+T DGG+AR Sbjct: 372 VGGTLFDNVTPDMTIYKEEIFGPVLSVVRVHDLAEAVDLINGHEYGNGVSCYTSDGGVAR 431 Query: 427 AFARSIKVGMVGINVPIPVPMAWHSFGGWKRSLFGDHHAYGEEGLRFYSRYKSVMQRWPD 486 AF+R I+VGMVGINVPIPVPMAWHSFGGWKRSLFGDHHAYGEEG+RFY+RYKS+MQRWPD Sbjct: 432 AFSRQIQVGMVGINVPIPVPMAWHSFGGWKRSLFGDHHAYGEEGIRFYTRYKSIMQRWPD 491 Query: 487 SIAKGPEFSMPTAQ 500 SI KG EF+MP A+ Sbjct: 492 SIGKGAEFTMPVAK 505 Lambda K H 0.320 0.137 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 833 Number of extensions: 28 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 500 Length of database: 505 Length adjustment: 34 Effective length of query: 466 Effective length of database: 471 Effective search space: 219486 Effective search space used: 219486 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory