Align malonate-semialdehyde dehydrogenase (EC 1.2.1.15); malonate-semialdehyde dehydrogenase (acetylating) (EC 1.2.1.18); methylmalonate-semialdehyde dehydrogenase (CoA-acylating) (EC 1.2.1.27) (characterized)
to candidate RR42_RS34225 RR42_RS34225 methylmalonate-semialdehyde dehydrogenase
Query= BRENDA::A0A081YAY7 (498 letters) >FitnessBrowser__Cup4G11:RR42_RS34225 Length = 506 Score = 588 bits (1517), Expect = e-172 Identities = 288/492 (58%), Positives = 360/492 (73%), Gaps = 3/492 (0%) Query: 6 HLIGGELIAD-TGRTADVFNPSTGEAVRKVPLADRETMQQAIDAAKAAFPAWRNTPPAKR 64 H I G +A +GR DVFNP+TG A R V L + A+ AA AAF AW +TPP +R Sbjct: 15 HYINGSRVASASGRAQDVFNPATGAAARSVALGSADEAGTAVAAAAAAFAAWADTPPIRR 74 Query: 65 AQVLFRFKQLLEANEERIVKLISEEHGKTIEDAAGELKRGIENVEYATAAPEILKGEYSR 124 A+V+ RF QL+ + + + +I+ EHGK DA GE+ RGI+ +E+A P++LKG+Y+ Sbjct: 75 ARVMQRFLQLMNQHRDTLAAMITAEHGKVFSDAQGEVSRGIDIIEFACGIPQLLKGDYTD 134 Query: 125 NVGPNIDAWSDFQPIGVVAGITPFNFPAMVPLWMYPLAIACGNTFILKPSERDPSSTLLI 184 V +D W+ QP+GVV GITPFNFP MVP WM+P+A+A GNTF+LKPSERDPS++L + Sbjct: 135 QVSTGMDNWTLRQPLGVVVGITPFNFPCMVPCWMFPIALAAGNTFVLKPSERDPSASLFM 194 Query: 185 AELFHEAGLPKGVLNVVHGDKGAVDALIEAPEVKALSFVGSTPIAEYIYSEGTKRGKRVQ 244 A+L EAGLP GV NVV GDK VDALI PEVKA+SFVGSTPIA+YI GKRVQ Sbjct: 195 ADLLTEAGLPAGVFNVVQGDKVVVDALIAHPEVKAVSFVGSTPIAQYISERSAHFGKRVQ 254 Query: 245 ALGGAKNHAVLMPDADLDNAVSALMGAAYGSCGERCMAISVAVCVGDQIADALVQKLVPQ 304 ALGGAKNH V+MPDAD++ AV AL+GA YGS GERCMAIS+AV VGD +AD ++ L + Sbjct: 255 ALGGAKNHLVVMPDADIEQAVDALIGAGYGSAGERCMAISIAVLVGD-VADKILPLLAER 313 Query: 305 IKGLKIGAGTSCGLDMGPLVTGAARDKVTGYIDTGVAQGAELVVDGRGYKVAGHENGFFL 364 +K L IG G + +MGP+VT A +++ GY+ GVA+GA LVVDGR +V GHE GFF Sbjct: 314 VKALVIGNGMNAEAEMGPIVTRQALERIEGYVGLGVAEGATLVVDGRDCRVPGHEAGFFT 373 Query: 365 GGTLFDRVTPEMTIYKEEIFGPVLCIVRVNSLEEAMQLINDHEYGNGTCIFTRDGEAARL 424 GGTLFD VTP M IYKEEIFGPVL VRV +A+QL+NDHE+GNG +T DG AR Sbjct: 374 GGTLFDNVTPAMRIYKEEIFGPVLGCVRVKDFAQAVQLVNDHEFGNGVACYTSDGGVARE 433 Query: 425 FCDEIEVGMVGVNVPLPVPVAYHSFGGWKRSLFGDLHAYGPDGVRFYTKRKAITQRWPQR 484 F I+VGMVG+NVP+PVP+A+H FGGWKRSLFGD HAYG +GVRFYTK+K++ QRWP Sbjct: 434 FARRIQVGMVGINVPIPVPMAWHGFGGWKRSLFGDTHAYGEEGVRFYTKQKSVMQRWPD- 492 Query: 485 KSHEAAQFAFPS 496 + A+FA P+ Sbjct: 493 SIGKGAEFAMPT 504 Lambda K H 0.319 0.137 0.411 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 768 Number of extensions: 27 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 498 Length of database: 506 Length adjustment: 34 Effective length of query: 464 Effective length of database: 472 Effective search space: 219008 Effective search space used: 219008 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory