Align xylonate dehydratase (EC 4.2.1.82) (characterized)
to candidate RR42_RS16210 RR42_RS16210 dihydroxy-acid dehydratase
Query= BRENDA::P39358 (655 letters) >FitnessBrowser__Cup4G11:RR42_RS16210 Length = 557 Score = 219 bits (559), Expect = 2e-61 Identities = 177/507 (34%), Positives = 254/507 (50%), Gaps = 46/507 (9%) Query: 98 AAAEVIKANHALPYAVYVSDPCDGRTQGTTGMFDSLPYRNDASMVMRRLIRSLPDAK--- 154 AA IKA+ A P DG + GT GM SL R V+ I + + Sbjct: 60 AAVAAIKASDANPQIFGTPTISDGMSMGTEGMKYSLISRE----VIADCIETATQGQWMD 115 Query: 155 AVIGVASCDKGLPATMMALAAQHNIATVLVPGGATLPAK-DGEDNGKVQTIGA--RFANG 211 V+ + CDK +P M+ALA + N+ + V GG P G+D V + A F G Sbjct: 116 GVVVIGGCDKNMPGGMIALA-RTNVPGIYVYGGTIKPGNWKGKDLTIVSSFEAVGEFTAG 174 Query: 212 ELSLQDARRAGCKACASSGGGCQFLGTAGTSQVVAEGLGLAIPHSALAPSGEPVWREIAR 271 LS +D AC SSG C + TA T E LG+++ +S+ + + + A Sbjct: 175 RLSQEDFEGVEKNACPSSGS-CGGMYTANTMSSSFEALGMSLLYSSTMANPDQEKVDSAA 233 Query: 272 ASARAALNLSQKGITTREILTDKAIENAMTVHAAFGGSTNLLLHIPAIAHQAGCHIPTVD 331 SAR + +K I R+I+T K+IENA+ + A GGSTN +LH AIAH A ++D Sbjct: 234 ESARVLVEAIKKDIKPRDIITRKSIENAVALIMATGGSTNAVLHYLAIAHSAEVEW-SID 292 Query: 332 DWIRINKRVPRLVSVLPNGPVYHPTVNAFMAGGVPEVMLHLRSLGLLHEDVMTVTGSTLK 391 D+ RI ++VP + ++ P+G + + AGG+P+VM L GL+H D +T+TG TL Sbjct: 293 DFERIRRKVPVICNLKPSG--QYVATDLHRAGGIPQVMKILLKAGLMHGDCLTITGRTLA 350 Query: 392 ENLDWWEHSERRQRFKQLLLDQEQINADEVIMSPQQAKARGLTSTITFPVGNIAPEGSVI 451 E L+ + R AD+ ++ P + KA + GN+A EG+V Sbjct: 351 EELENVPDTPR---------------ADQDVIMPIE-KALYKEGHLAILKGNLAQEGAVA 394 Query: 452 KSTAIDPSMIDEQGIYYHKGVAKVYLSEKSAIYDIKHDKIKAGDILVIIGVGP-SGTGME 510 K T + +I G A+V+ E+SA+ I DKI AGDILV+ +GP G GM Sbjct: 395 KITGLKNPVI--------TGPARVFEDEQSAMDAILADKINAGDILVLRYLGPKGGPGMP 446 Query: 511 ETYQVTSALKHLSYGKHVSLITDARFSGVSTGACIGHVGPEALAGGPIGKLRTGDLIEIK 570 E TSA+ G+ V ITD RFSG + G +GHV PEA GG I ++ GD + Sbjct: 447 EMLAPTSAIIGKGLGESVGFITDGRFSGGTWGMVVGHVAPEAHVGGNIALVQEGD--SVT 504 Query: 571 IDCRELHGEVNFLGTRSDEQLPSQEEA 597 ID +L E+N S+E+L + A Sbjct: 505 IDAHKLLLELNV----SEEELAKRRAA 527 Lambda K H 0.317 0.135 0.400 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 806 Number of extensions: 43 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 655 Length of database: 557 Length adjustment: 37 Effective length of query: 618 Effective length of database: 520 Effective search space: 321360 Effective search space used: 321360 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory