Align Xylonate dehydratase (EC 4.2.1.82) (characterized)
to candidate RR42_RS31070 RR42_RS31070 dihydroxy-acid dehydratase
Query= reanno::pseudo5_N2C3_1:AO356_28760 (594 letters) >FitnessBrowser__Cup4G11:RR42_RS31070 Length = 576 Score = 347 bits (889), Expect = 1e-99 Identities = 206/529 (38%), Positives = 294/529 (55%), Gaps = 15/529 (2%) Query: 45 RPIIGIAQTGSDLTPCNRHHLELAQRVKAGIRDAGGIPMEFPVHPIAEQSRRPTAALDRN 104 RP+IGI T S PC+ + +L + VK G+ AGG+P++FP + E PT+ RN Sbjct: 42 RPVIGIVNTNSSYNPCHGNAPQLVEAVKRGVMLAGGLPVDFPTISVHESFSAPTSMYLRN 101 Query: 105 LAYLGLVEILHGYPLDGVVLTTGCDKTTPACLMAAATTDLPAIVLSGGPMLDGHHKGELI 164 L + E++ P+D VVL GCDKT PA LM AA+ +PAI L G ML G H+GE + Sbjct: 102 LMSMDTEEMIRAQPMDAVVLIGGCDKTVPAQLMGAASAGVPAIQLVTGSMLTGSHRGERV 161 Query: 165 GSGTVLWHARNLMAAGEIDYEGFMEMTTAASPSVGHCNTMGTALSMNALAEALGMSLPGC 224 G+ T A EID ++ SVG C+ MGTA +M L EALGM + G Sbjct: 162 GACTDCRRYWGRYRAEEIDAPEIADVNNQLVASVGTCSVMGTASTMACLTEALGMMVAGG 221 Query: 225 ASIPAPYRERGQMAYATGKRICELVLQDIRPSQIMTRQAFENAIAVASALGASSNCPPHL 284 AS PA +R ++A TG + + P +I+T +A ENAI V A+G S+N HL Sbjct: 222 ASAPAVTADRVRVAERTGTTAVAMARSGLTPERILTGRAIENAIRVLLAIGGSTNGIVHL 281 Query: 285 IAIARHMGVELSLDDWQRIGEDVPLLVNCMPAGKYLGEGFHRAGGVPSVMHELQKAGRLH 344 AIA +G+ + L R+ + P+LV+ P+G++ E FH AGG+P+++ EL+ LH Sbjct: 282 TAIAGRLGIGIDLAGLDRMSRETPVLVDLKPSGQHYMEDFHAAGGMPALLRELRPL--LH 339 Query: 345 EDCATVSGRTIGEIVSSSLTSNA-DVIHPFDTPLKHRAGFIVLSGNFF-DSAIMKMSVVG 402 D TVSGRT+GE + ++ A +VI PFD P+ G VL GN AI+K S Sbjct: 340 LDTLTVSGRTLGEELDAAPAPFAQEVIRPFDAPIYPVGGLAVLRGNLAPGGAIIKQSAAD 399 Query: 403 EAFRKTYLSEPGAENSFEARAIVFEGPEDYHARIDDPALDIDERCILVIRGVGTVGYPGS 462 + E RA+VFE ED RIDD ALD+ ILV++ +G G PG Sbjct: 400 PVLME-----------HEGRAVVFEDAEDMALRIDDDALDVKADDILVLKRIGPTGAPGM 448 Query: 463 AEVVNMAPPAALIKQGIDSLPCLGDGRQSGTSASPSILNMSPEAAVGGGLALLQTNDRLK 522 E M P L + G+ + + DGR SGT+A +L+++PEAA+GG LA ++ DR++ Sbjct: 449 PEAGYMPIPRKLARAGVKDMVRISDGRMSGTAAGTIVLHVTPEAAIGGPLAHVRNGDRIR 508 Query: 523 VDLNTRTVNLLIDDEEMARRRLEWTPNIPPSQTPWQELYRQLVGQLSTG 571 + + R ++LLIDD E+ARR E P ++ +++L+ V Q G Sbjct: 509 LSVARREISLLIDDAELARRAAEHEVVRPAAERGYRKLFLATVTQADQG 557 Lambda K H 0.319 0.135 0.407 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 917 Number of extensions: 57 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 594 Length of database: 576 Length adjustment: 37 Effective length of query: 557 Effective length of database: 539 Effective search space: 300223 Effective search space used: 300223 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory