Align FcbT3, component of Tripartite 4-chlorobenzoate symporter (also binds and may transport 4-bromo-, 4-iodo-, and 4-fluorobenzoate and with a lower affinity, 3-chlorobenzoate, 2-chlorobenzoate, 4-hydroxybenzoate, 3-hydroxybenzoate, and benzoate) (characterized)
to candidate 3609772 Dshi_3155 TRAP dicarboxylate transporter, DctM subunit (RefSeq)
Query= TCDB::Q9RBQ9 (439 letters) >FitnessBrowser__Dino:3609772 Length = 429 Score = 250 bits (639), Expect = 5e-71 Identities = 143/434 (32%), Positives = 239/434 (55%), Gaps = 11/434 (2%) Query: 8 WLLLGGTTVLLFLGLPVAYSFFAINVVGAWLFLGGDSALGQLVRNGLVAVASFSLTPIPL 67 W + G LL L +PV F + G F + L + +L IP Sbjct: 3 WAISAGLLGLLALSIPVGIVLFLLGF-GVDAFFSPFPLIRGLGNLVWSTSNNATLIAIPF 61 Query: 68 FILMGELLFHTGLAQRAIDGIDKVIPRLPGRLAVIAVVAGTFFSAISGSTIATTAMLGSL 127 F+L+GE+L +G+A R +D+ + LPG L V T FSA SGS++AT A + ++ Sbjct: 62 FVLLGEILVRSGIATRTYSALDRWVSWLPGGLVHANVATATMFSATSGSSVATAATVATV 121 Query: 128 MLPMMLARGYEPKLGMGPIIAIGGVDMLIPPSALAVLLGSLAGISISKLLIGGVLPGLLL 187 +P GY+P+L G I A G + ++IPPS ++ G L SI +L + G++PG+ L Sbjct: 122 AMPQAEKLGYDPRLFSGAIAAGGTLGIMIPPSINLIVYGFLTQTSIPQLFLAGLVPGIAL 181 Query: 188 AISFVAYIVASAKLRPESAPREELVVLRGWERWRELV---VYVLPLSLIFVAIVAVISGG 244 A+ F+A V +RPE L LR + E++ + ++P+ L+F I+ I G Sbjct: 182 ALGFMAITVVICLIRPE------LGGLRRTFPFPEMLRALLQLIPIILLFTVIIGTIYKG 235 Query: 245 VATPTEAAAIGCAATLAITLMYRALRWQSLVQALQGTVAISGMILFIIVAATTFSQVLSF 304 ATPTEAAA+G A + I ++ + + ++ GT+ I+ MI+ +++AA+ + L+ Sbjct: 236 WATPTEAAAVGVAGAVVIAALFGGVSVKMFADSILGTIKITSMIMLVVIAASFLNFTLAS 295 Query: 305 SGATNGIVDLVQSSGLPPAGVVAIMLAILIFLGLFVDQVSMMLLTLPFYMPIVKSLGIDQ 364 +G + L+ GL P G++ +++ I I LG F++ +S+M++T+P +P+V + G D Sbjct: 296 AGLGRELQSLLDGLGLTPTGLILVVVLIYIVLGFFIETLSLMVVTIPIIVPLVVAQGFDP 355 Query: 365 IWFGVMYLICMQLGLLMPPHGMLLYTMKGVAPKHITMGQVFASAMPYVGLSFTMLILIFF 424 IWFG++ ++ +++ L+ PP G+ LY ++G A K M +V A+PYV M+ L+ Sbjct: 356 IWFGILMIVLIEMALITPPVGLNLYVVQG-ARKSGKMSEVMVGAIPYVIAMLIMVGLLIL 414 Query: 425 WPGIATWLPDVFVG 438 +P IA +LP V G Sbjct: 415 FPSIALYLPSVLSG 428 Lambda K H 0.329 0.143 0.433 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 480 Number of extensions: 24 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 439 Length of database: 429 Length adjustment: 32 Effective length of query: 407 Effective length of database: 397 Effective search space: 161579 Effective search space used: 161579 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory