Align L-arabinose ABC transporter, ATP-binding protein AraG; EC 3.6.3.17 (characterized)
to candidate 3609459 Dshi_2843 ABC transporter related (RefSeq)
Query= CharProtDB::CH_014279 (504 letters) >FitnessBrowser__Dino:3609459 Length = 548 Score = 275 bits (702), Expect = 4e-78 Identities = 176/508 (34%), Positives = 274/508 (53%), Gaps = 17/508 (3%) Query: 6 PYLSFRGIGKTFPGVKALTDISFDCYAGQVHALMGENGAGKSTLLKILSGNYAPTTGSVV 65 P + RGI K F V+A DIS G +H ++GENGAGKSTL+ IL G Y G + Sbjct: 24 PAIELRGISKAFGPVQANKDISIRVMPGTIHGIIGENGAGKSTLMSILYGFYKADAGEIF 83 Query: 66 INGQEMSFSDTTAALNAGVAIIYQELHLVPEMTVAENIYLGQLPHKGGIVNRSLLNYEAG 125 I GQ+ D+ AA+ AG+ +++Q LV TV EN+ LG +G ++ SL Sbjct: 84 IKGQKTEIPDSQAAIRAGIGMVFQHFKLVENFTVLENVVLG--AEEGALLRPSLAKARKL 141 Query: 126 LQ--LKHLGMDIDPDTPLKYLSIGQWQMVEIAKALARNAKIIAFDEPTSSLSAREIDNLF 183 L+ + +++ PD ++ LS+G Q VEI KAL R A I+ DEPT L+ E D+LF Sbjct: 142 LRELSEEYELNVAPDALIEDLSVGHQQRVEILKALYRKADILILDEPTGVLTPAEADHLF 201 Query: 184 RVIRELRKEGRVILYVSHRMEEIFALSDAITVFKDGRYVKTFTDMQQVDHDALVQAMVGR 243 R++ L+ EG+ I+ ++H++ EI +D ++V + G T + L + MVGR Sbjct: 202 RILEGLKAEGKTIILITHKLREIMETTDTVSVMRRGEMTAT-VKTADTSPEQLAELMVGR 260 Query: 244 DIGDIYGWQPRSYGEERLRLD---AVKAPGVR--TPISLAVRSGEIVGLFGLVGAGRSEL 298 + P G L +D V GV ISL VR+GE++G+ G+ G G+SEL Sbjct: 261 KVLLRVDKTPAQPGAPILTVDDLRVVDDQGVERVKGISLQVRAGEVLGIAGVAGNGQSEL 320 Query: 299 MKGMFGGTQITAGQVYIDQQPIDIR-KPSHA---IAAGMMLCPEDRKAEGIIPVHSVRDN 354 ++ + GG + G+V + Q ID+ K S+ A G+ PEDR+AEG+I + +N Sbjct: 321 LE-VLGGMRPATGRVTVSGQQIDLTGKHSNGKTRRAQGIAHVPEDRQAEGLIMDYHAWEN 379 Query: 355 INISARRKHVLG-GCVINNGWEENNADHHIRSLNIKTPGAEQLIMNLSGGNQQKAILGRW 413 + G +++N +A+ I +++ N SGGNQQK +L R Sbjct: 380 VAFGYHDDPAYNRGLLMDNRAVRADAEGKIARFDVRPADCWLAAKNFSGGNQQKIVLARE 439 Query: 414 LSEEMKVILLDEPTRGIDVGAKHEIYNVIYALAAQGVAVLFASSDLPEVLGVADRIVVMR 473 + +++L+ +PTRG+D+GA I+ I AL G A+L S +L E+L ++DR+ VM Sbjct: 440 IERNPELLLVGQPTRGVDIGAIEFIHQQIIALRDAGKAILLVSVELEEILSLSDRVAVMF 499 Query: 474 EGEIAGELLHEQADERQALSLAMPKVSQ 501 +G I GE + +E++ L L M +++ Sbjct: 500 DGRIMGERPAAETNEKE-LGLLMAGITE 526 Lambda K H 0.319 0.136 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 684 Number of extensions: 38 Number of successful extensions: 10 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 504 Length of database: 548 Length adjustment: 35 Effective length of query: 469 Effective length of database: 513 Effective search space: 240597 Effective search space used: 240597 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory