Align Alpha-ketoglutaric semialdehyde dehydrogenase; alphaKGSA dehydrogenase; 2,5-dioxovalerate dehydrogenase; EC 1.2.1.26 (characterized)
to candidate 3607686 Dshi_1095 aldehyde dehydrogenase (RefSeq)
Query= SwissProt::P42236 (488 letters) >lcl|FitnessBrowser__Dino:3607686 Dshi_1095 aldehyde dehydrogenase (RefSeq) Length = 506 Score = 276 bits (705), Expect = 2e-78 Identities = 175/488 (35%), Positives = 256/488 (52%), Gaps = 15/488 (3%) Query: 7 QNTYLNFINGEWVKSQSGDMVKVENPADVNDIVGYVQNSTAEDVERAVTAANEAKTAWRK 66 ++ Y NFI G++V G P ++VG + S+A DVE A+ AA+ AK AW K Sbjct: 16 KDRYDNFIGGKFVPPVEGRYFDNVTPI-TGEVVGQIARSSAADVELALDAAHAAKDAWGK 74 Query: 67 LTGAERGQYLYKTADIMEQRLEEIAACATREMGKTLPEAK-GETARGIAILRYYAGEGMR 125 + ER + K AD +E+ L+ IA T + GK + E + + RY+AG Sbjct: 75 TSVTERANIVLKIADRIEENLDIIAKAETWDNGKPIRETTLADIPLAVDHFRYFAGVLRG 134 Query: 126 KTGDVIPSTDKDALMFTTRVPLGVVGVISPWNFPVAIPIWKMAPALVYGNTVVIKPATET 185 + G + D D + + PLGVVG I PWNF + + WK+APA+ GN +V+KPA +T Sbjct: 135 QEGSM-SEIDNDTVAYHFHEPLGVVGQIIPWNFSILMAAWKLAPAIAAGNCIVLKPAEQT 193 Query: 186 AVTCAKIIACFEEAGLPAGVINLVTGPGSVVGQGLAEHDGVNAVTFTGSNQVGKIIGQAA 245 ++ + LPAGV+N+V G G VG LA D + + FTGS G+ I +AA Sbjct: 194 PAAIMVLVELISDL-LPAGVLNIVNGYGGEVGAALATSDRIAKIAFTGSTATGRKIMEAA 252 Query: 246 LARGAKYQLEMGGKNP------VIVADDADLEAAAEAVITGAFRSTGQKCTATSRVIVQS 299 LE+GGK+P V+ DDA L+ A E + AF G+ CT SR ++ Sbjct: 253 TVNLIPVTLELGGKSPNIFFKDVMAEDDAFLDKAVEGFVLFAFNQ-GEVCTCPSRALIHE 311 Query: 300 GIYERFKEKLLQRTKDITIGDSLKEDVWMGPIASKNQLDNCLSYIEKGKQEGASLLIGGE 359 IYE F + + R K I GD K + +G ASK Q D LSY + G +EGA +L GG+ Sbjct: 312 DIYEEFIARAIARVKAIVQGDPRKMETMVGAQASKEQKDKILSYFQIGVEEGAEVLTGGK 371 Query: 360 KLE-NGKYQNGYYVQPAIFDNVTSEMTIAQEEIFGPVIALIKVDSIEEALNIANDVKFGL 418 + + ++G+Y++P I ++M + QEEIFGPV+++ + EEAL +AND +GL Sbjct: 372 VADVSDDLKDGFYIEPTILKG-HNKMRVFQEEIFGPVVSVTTFKTEEEALELANDTMYGL 430 Query: 419 SASIFTENIGRMLSFIDEIDAGLVRINAESAGVELQAPFGGMKQSSSHSREQGEAAKDFF 478 A +++ + F + AG V +N A A FGG KQS RE + D + Sbjct: 431 GAGVWSRDQNTCYRFGRGVQAGRVWVNNYHA-YPAHAAFGGYKQSGI-GRENHKMMLDHY 488 Query: 479 TAIKTVFV 486 K + V Sbjct: 489 QQTKNMLV 496 Lambda K H 0.315 0.132 0.374 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 582 Number of extensions: 32 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 488 Length of database: 506 Length adjustment: 34 Effective length of query: 454 Effective length of database: 472 Effective search space: 214288 Effective search space used: 214288 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.5 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory