Align Alpha-ketoglutaric semialdehyde dehydrogenase 2; alphaKGSA dehydrogenase 2; 2,5-dioxovalerate dehydrogenase 2; KGSADH-II; EC 1.2.1.26 (characterized)
to candidate 3609053 Dshi_2442 aldehyde dehydrogenase (RefSeq)
Query= SwissProt::Q08IC0 (525 letters) >lcl|FitnessBrowser__Dino:3609053 Dshi_2442 aldehyde dehydrogenase (RefSeq) Length = 501 Score = 495 bits (1274), Expect = e-144 Identities = 275/501 (54%), Positives = 332/501 (66%), Gaps = 9/501 (1%) Query: 5 GEMLIGAEAVAGSAGTLRAFDPSKGEPIDAPVFGVAAQADVERACELARDAFDAYRAQPL 64 G+ LI A A GS T A DP+ G A F V A V++AC A DAF +Y Sbjct: 7 GKHLI-AGAWVGSDQTF-ASDPAHGP---AHEFSVGTPALVDQACAAAEDAFASYGYSDA 61 Query: 65 AARAAFLEAIADEIVALGDALIERAHAETGLPVARLQGERGRTVGQLRLFARVVRDGRFL 124 A RAAFL AIADEI A + ETGLP ARLQGERGRT GQLRLFA + G L Sbjct: 62 ATRAAFLNAIADEIDARAQIITGIGTQETGLPEARLQGERGRTTGQLRLFAEHILKGDCL 121 Query: 125 AASIDPAQPARTPLPRSDLRLQKVGLGPVVVFGASNFPLAFSVAGGDTASALAAGCPVIV 184 DPA P R PLPR DL+L + +GPV VFGASNFPLAFSVAGGDTA+ALAAGCPV+V Sbjct: 122 DRRHDPALPDRAPLPRPDLKLVQRPIGPVAVFGASNFPLAFSVAGGDTAAALAAGCPVVV 181 Query: 185 KAHEAHLGTSELVGRAIRAAVAKTGMPAGVFSLLVGPGRVIGGALVSHPAVQAVGFTGSR 244 K H AH GT E+V AI AA+A+TGMPAGVFSL+ G R +G ALV HP ++AVGFTGS Sbjct: 182 KGHSAHPGTGEIVAEAIHAAIARTGMPAGVFSLIQGGKRDVGTALVQHPLIRAVGFTGSL 241 Query: 245 QGGMALVQIANARPQPIPVYAEMSSINPVVLFPAALAARGDAIATGFVDSLTLGVGQFCT 304 GG AL + ARP+PIP + E+ S+NP+ L P A+AARG I G+ SL +G GQFCT Sbjct: 242 AGGRALFDLCAARPEPIPFFGELGSVNPMFLLPEAIAARGAEIGAGWAGSLAMGAGQFCT 301 Query: 305 NPGLVLAIDGPDLDRFETVAAQALAKKPAGVMLTQGIADAYRNGRGKLAELPGVREIGAG 364 NPG+ + + P D F A AL + A MLT+GIA AYR+G +LA P E+ Sbjct: 302 NPGIAVVL--PGADAFVAAAEAALRETAAQTMLTEGIAAAYRDGVARLAAHPQTSELLG- 358 Query: 365 EAAQTDCQAGGALYEVGAQAFLAEPAFSHEVFGPASLIVRCRDLDEVARVLEALEGQLTA 424 A +A LY V A+ +LA+ EVFGP L+V +D E+AR+ +L+GQLT Sbjct: 359 -APCDGREAHPCLYRVAARDWLADHTLQEEVFGPLGLVVEAQDAAEMARIARSLQGQLTC 417 Query: 425 TLQMDADDKPLARRLLPVLERKAGRLLVNGYPTGVEVCDAMVHGGPFPATSNPAVTSVGA 484 TL M+ D AR L+P+LERKAGR+LVNG+PTGVEV D+MVHGGP+PA++N TSVG Sbjct: 418 TLHMEDGDTDHARSLVPLLERKAGRMLVNGFPTGVEVADSMVHGGPYPASTNFGATSVGT 477 Query: 485 TAIERFLRPVCYQDFPDDLLP 505 +I RFLRPVCYQ+ PD LLP Sbjct: 478 LSIRRFLRPVCYQNMPDALLP 498 Lambda K H 0.320 0.137 0.396 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 914 Number of extensions: 44 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 525 Length of database: 501 Length adjustment: 35 Effective length of query: 490 Effective length of database: 466 Effective search space: 228340 Effective search space used: 228340 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory