Align Glutarate-semialdehyde dehydrogenase (EC 1.2.1.20) (characterized)
to candidate 3607155 Dshi_0577 aldehyde dehydrogenase (RefSeq)
Query= reanno::pseudo13_GW456_L13:PfGW456L13_495 (480 letters) >lcl|FitnessBrowser__Dino:3607155 Dshi_0577 aldehyde dehydrogenase (RefSeq) Length = 483 Score = 301 bits (772), Expect = 2e-86 Identities = 174/472 (36%), Positives = 251/472 (53%), Gaps = 9/472 (1%) Query: 10 RQQAFIDGAWVDADNGQTIKVNNPA-TGEILGTVPKMGAAETRRAIEAADKALPAWRALT 68 R Q +IDGAW + I+ NP+ T +++G + A + A+ AA +A PAW A Sbjct: 4 RTQLYIDGAWTEGT--AQIENRNPSDTTDLIGMYAQADAGQLDTALAAARRAQPAWWAAG 61 Query: 69 AKERATKLRRWYELIIENQDDLARLMTLEQGKPLAEAKGEIVYAASFIEWFAEEAKRIYG 128 ++R L ++ D++ RL++ E+GKPLAE KGE+ A F +FA EA R +G Sbjct: 62 IQKRHDVLMAIGTELMARSDEIGRLLSREEGKPLAEGKGEVYRAGQFFTYFAAEALRQHG 121 Query: 129 DVIPGHQPDKRLIVIKQPIGVTAAITPWNFPAAMITRKAGPALAAGCTMVLKPASQTPFS 188 D+ +P + V ++ +GV A I+PWNFP A K PALA G +V KPA+ TP S Sbjct: 122 DLAESVRPGIEIDVRREAVGVVAIISPWNFPVATPAWKIAPALAFGNAVVWKPANVTPAS 181 Query: 189 AFALAELAQRAGIPAGVFSVVSGSAGDIGSELTSNPIVRKLSFTGSTEIGRQLMSECAKD 248 A AL E+ R IP G+F++V+G D+G L + V +SFTGS +GR + + ++ Sbjct: 182 AIALTEIIARQDIPKGLFNLVAGPGRDVGQRLVESAEVDAISFTGSVPVGRGIAAAAVQN 241 Query: 249 IKKVSLELGGNAPFIVFDDADLDKAVEGAIISKYRNNGQTCVCANRLYIQDGVYDAFAEK 308 + KV +E+G P IV DD DLD AV A S + GQ C A+RL + V+DAF EK Sbjct: 242 MTKVQMEMGSKNPLIVMDDCDLDLAVAHAASSAFGGTGQKCTAASRLIVHSAVHDAFVEK 301 Query: 309 LKVAVAKLKIGNGLEAGTTTGPLIDEKAVAKVQEHIADALSKGATVLAGGKPME----GN 364 L A +K+G+ LE GT GP++ E + + E+I +GA +L GG +E G Sbjct: 302 LVAAARAMKVGHALEDGTQLGPVVSESQLNQNMEYIGVGKDEGAELLCGGDRLEMATDGY 361 Query: 365 FFEPTILTNVPNNAAVAKEETFGPLAPLFRFKDEADVIAMSNDTEFGLASYFYARDLGRV 424 F P + N+ + +EE F P+ + R + +A +NDT+FGL + L R Sbjct: 362 FMAPAVFAGTANDMRINREEMFAPITAVQRVDSYDEALARANDTQFGLTAGIMTTSLARA 421 Query: 425 FRVAEALEYGMVGVNTGLISNEV-APFGGIKASGLG-REGSKYGIEDYLEIK 474 + G V VN + PFGG AS G RE Y E Y +K Sbjct: 422 SHFRAHMRAGCVMVNLPTAGTDYHVPFGGRGASSFGPREQGSYAAEFYTTVK 473 Lambda K H 0.317 0.135 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 551 Number of extensions: 22 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 480 Length of database: 483 Length adjustment: 34 Effective length of query: 446 Effective length of database: 449 Effective search space: 200254 Effective search space used: 200254 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory