Align Glutarate-semialdehyde dehydrogenase; EC 1.2.1.- (characterized)
to candidate 3609503 Dshi_2887 succinic semialdehyde dehydrogenase (RefSeq)
Query= SwissProt::Q9I6M5 (483 letters) >lcl|FitnessBrowser__Dino:3609503 Dshi_2887 succinic semialdehyde dehydrogenase (RefSeq) Length = 492 Score = 637 bits (1642), Expect = 0.0 Identities = 311/479 (64%), Positives = 375/479 (78%), Gaps = 1/479 (0%) Query: 3 LKDAKLFRQQAYVDGAWVDADNGQTIKVNNPATGEIIGSVPKMGAAETRRAIEAADKALP 62 LKD L +AY GAW DAD+G T V NPA G++I VP +G AET RAI AAD A Sbjct: 12 LKDPALLASKAYFAGAWTDADSGATFPVTNPARGDVIAHVPDLGRAETARAIAAADAAQK 71 Query: 63 AWRALTAKERANKLRRWFDLMIENQDDLARLMTIEQGKPLAEAKGEIAYAASFLEWFGEE 122 W A TAK+RA LRRWFDL++ N DDLAR++T E GKPLAEA+GE+ Y ASF+EWF EE Sbjct: 72 PWAARTAKDRAQVLRRWFDLIVGNADDLARILTAEMGKPLAEARGEVMYGASFVEWFAEE 131 Query: 123 AKRIYGDTIPGHQPDKRIIVIKQPIGVTAAITPWNFPSAMITRKAGPALAAGCTMVLKPA 182 AKR+YG+TIPGH PD RI VI+QPIGV AITPWNFP AMITRKA PALAAGC + KPA Sbjct: 132 AKRLYGETIPGHLPDARIQVIRQPIGVVGAITPWNFPIAMITRKAAPALAAGCAFLSKPA 191 Query: 183 SQTPYSALALAELAERAGIPKGVFSVVTGS-AGEVGGELTSNPIVRKLTFTGSTEIGRQL 241 TP SALALA LAERAGIP G+F+V+ S + +G E N VRKLTFTGST++GR L Sbjct: 192 EDTPLSALALAVLAERAGIPAGLFAVLPSSDSSAIGKEFCENHTVRKLTFTGSTQVGRIL 251 Query: 242 MAECAQDIKKVSLELGGNAPFIVFDDADLDAAVEGALISKYRNNGQTCVCANRLYVQDGV 301 +A+ A +KK S+ELGGNAPFIVFDDADLD AVEGA+ K+RN GQTCVCANR+YVQDGV Sbjct: 252 LAQAADQVKKCSMELGGNAPFIVFDDADLDKAVEGAMACKFRNAGQTCVCANRIYVQDGV 311 Query: 302 YDAFVDKLKAAVAKLNIGNGLEAGVTTGPLIDAKAVAKVEEHIADAVSKGAKVVSGGKPH 361 YDAF +KL AAV +L +G+G GVT GPLI+ AV KV++H+ D +KG VV+GG+ H Sbjct: 312 YDAFAEKLAAAVEELKVGDGAAEGVTIGPLINMPAVEKVQDHLDDLRAKGGTVVTGGETH 371 Query: 362 ALGGTFFEPTILVDVPKNALVSKDETFGPLAPVFRFKDEAEVIAMSNDTEFGLASYFYAR 421 LGGTFF PT++ V + V+++ETFGP+AP+FRF +E EVIAM+NDT FGLA YFYAR Sbjct: 372 PLGGTFFTPTVVTGVTQEMKVAREETFGPVAPLFRFTEEDEVIAMANDTIFGLAGYFYAR 431 Query: 422 DLARVFRVAEQLEYGMVGINTGLISNEVAPFGGIKASGLGREGSKYGIEDYLEIKYLCL 480 D+ R+ RV+E LEYG+VGINTG+IS E APFGG+K SGLGREGS++GI++YLE+KY+CL Sbjct: 432 DIGRITRVSEALEYGIVGINTGIISTEGAPFGGVKQSGLGREGSRHGIDEYLEMKYICL 490 Lambda K H 0.317 0.135 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 701 Number of extensions: 18 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 483 Length of database: 492 Length adjustment: 34 Effective length of query: 449 Effective length of database: 458 Effective search space: 205642 Effective search space used: 205642 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory