Align succinate-semialdehyde dehydrogenase (NADP+) [EC: 1.2.1.16] (characterized)
to candidate 3609503 Dshi_2887 succinic semialdehyde dehydrogenase (RefSeq)
Query= reanno::MR1:200453 (482 letters) >lcl|FitnessBrowser__Dino:3609503 Dshi_2887 succinic semialdehyde dehydrogenase (RefSeq) Length = 492 Score = 646 bits (1666), Expect = 0.0 Identities = 320/481 (66%), Positives = 381/481 (79%), Gaps = 1/481 (0%) Query: 3 LNDPSLLRQQCYINGQWCDANSKETVAITNPATGAVIACVPVMGQAETQAAIAAAEAALP 62 L DP+LL + Y G W DA+S T +TNPA G VIA VP +G+AET AIAAA+AA Sbjct: 12 LKDPALLASKAYFAGAWTDADSGATFPVTNPARGDVIAHVPDLGRAETARAIAAADAAQK 71 Query: 63 AWRALTAKERGAKLRRWFELLNENSDDLALLMTSEQGKPLTEAKGEVTYAASFIEWFAEE 122 W A TAK+R LRRWF+L+ N+DDLA ++T+E GKPL EA+GEV Y ASF+EWFAEE Sbjct: 72 PWAARTAKDRAQVLRRWFDLIVGNADDLARILTAEMGKPLAEARGEVMYGASFVEWFAEE 131 Query: 123 AKRIYGDTIPGHQGDKRIMVIKQPVGVTAAITPWNFPAAMITRKAAPALAAGCTMVVKPA 182 AKR+YG+TIPGH D RI VI+QP+GV AITPWNFP AMITRKAAPALAAGC + KPA Sbjct: 132 AKRLYGETIPGHLPDARIQVIRQPIGVVGAITPWNFPIAMITRKAAPALAAGCAFLSKPA 191 Query: 183 PQTPFTALALAVLAERAGIPAGVFSVI-TGDAIAIGNEMCTNPIVRKLSFTGSTNVGIKL 241 TP +ALALAVLAERAGIPAG+F+V+ + D+ AIG E C N VRKL+FTGST VG L Sbjct: 192 EDTPLSALALAVLAERAGIPAGLFAVLPSSDSSAIGKEFCENHTVRKLTFTGSTQVGRIL 251 Query: 242 MAQCAPTLKKLSLELGGNAPFIVFDDANIDAAVEGAMIAKYRNAGQTCVCANRIYVQAGV 301 +AQ A +KK S+ELGGNAPFIVFDDA++D AVEGAM K+RNAGQTCVCANRIYVQ GV Sbjct: 252 LAQAADQVKKCSMELGGNAPFIVFDDADLDKAVEGAMACKFRNAGQTCVCANRIYVQDGV 311 Query: 302 YDEFAEKLSMAVAKLKVGEGIIAGVTTGPLINAAAVEKVQSHLEDAIKKGATVLAGGKVH 361 YD FAEKL+ AV +LKVG+G GVT GPLIN AVEKVQ HL+D KG TV+ GG+ H Sbjct: 312 YDAFAEKLAAAVEELKVGDGAAEGVTIGPLINMPAVEKVQDHLDDLRAKGGTVVTGGETH 371 Query: 362 ELGGNFFEPTVLTNADKSMRVAREETFGPLAPLFKFNDVDDVIKQANDTEFGLAAYFYGR 421 LGG FF PTV+T + M+VAREETFGP+APLF+F + D+VI ANDT FGLA YFY R Sbjct: 372 PLGGTFFTPTVVTGVTQEMKVAREETFGPVAPLFRFTEEDEVIAMANDTIFGLAGYFYAR 431 Query: 422 DISLVWKVAESLEYGMVGVNTGLISTEVAPFGGMKSSGLGREGSKYGIEEYLEIKYICMS 481 DI + +V+E+LEYG+VG+NTG+ISTE APFGG+K SGLGREGS++GI+EYLE+KYIC+S Sbjct: 432 DIGRITRVSEALEYGIVGINTGIISTEGAPFGGVKQSGLGREGSRHGIDEYLEMKYICLS 491 Query: 482 V 482 + Sbjct: 492 I 492 Lambda K H 0.318 0.133 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 699 Number of extensions: 18 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 482 Length of database: 492 Length adjustment: 34 Effective length of query: 448 Effective length of database: 458 Effective search space: 205184 Effective search space used: 205184 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory