GapMind for catabolism of small carbon sources

 

Alignments for a candidate for acn in Dinoroseobacter shibae DFL-12

Align Aconitate hydratase (EC 4.2.1.3) (characterized)
to candidate 3608667 Dshi_2060 aconitate hydratase 2 (RefSeq)

Query= reanno::Dino:3608667
         (930 letters)



>FitnessBrowser__Dino:3608667
          Length = 930

 Score = 1824 bits (4725), Expect = 0.0
 Identities = 930/930 (100%), Positives = 930/930 (100%)

Query: 1   MSLYTAYLEEIAARKEQGLQPKPIDDAALTSEIIAQIKDPAHEHRADSLQFFIYNTLPGT 60
           MSLYTAYLEEIAARKEQGLQPKPIDDAALTSEIIAQIKDPAHEHRADSLQFFIYNTLPGT
Sbjct: 1   MSLYTAYLEEIAARKEQGLQPKPIDDAALTSEIIAQIKDPAHEHRADSLQFFIYNTLPGT 60

Query: 61  TSAAGAKAQFLKEIILGESVVAEITPDFAFELLSHMRGGPSVEVLLDIALGDDASLAAQA 120
           TSAAGAKAQFLKEIILGESVVAEITPDFAFELLSHMRGGPSVEVLLDIALGDDASLAAQA
Sbjct: 61  TSAAGAKAQFLKEIILGESVVAEITPDFAFELLSHMRGGPSVEVLLDIALGDDASLAAQA 120

Query: 121 AEVLKTQVFLYEADTDRLKAAHEAGNAVATGILQSYARAEFFTTLPEIEDEIEVVTYIAA 180
           AEVLKTQVFLYEADTDRLKAAHEAGNAVATGILQSYARAEFFTTLPEIEDEIEVVTYIAA
Sbjct: 121 AEVLKTQVFLYEADTDRLKAAHEAGNAVATGILQSYARAEFFTTLPEIEDEIEVVTYIAA 180

Query: 181 EGDISTDLLSPGNQAHSRSDRELHGKCMISEAAQKEIEALKLQHPGKRVMLIAEKGTMGV 240
           EGDISTDLLSPGNQAHSRSDRELHGKCMISEAAQKEIEALKLQHPGKRVMLIAEKGTMGV
Sbjct: 181 EGDISTDLLSPGNQAHSRSDRELHGKCMISEAAQKEIEALKLQHPGKRVMLIAEKGTMGV 240

Query: 241 GSSRMSGVNNVALWTGKQASPYVPFVNIAPVVAGTNGISPIFMTTVGVTGGIGIDLKNWV 300
           GSSRMSGVNNVALWTGKQASPYVPFVNIAPVVAGTNGISPIFMTTVGVTGGIGIDLKNWV
Sbjct: 241 GSSRMSGVNNVALWTGKQASPYVPFVNIAPVVAGTNGISPIFMTTVGVTGGIGIDLKNWV 300

Query: 301 KKVDGDGNPILNNDGNPILEQKYSVDTGTVLKIDTKARKLMSADGGEELADVSSAFSPQA 360
           KKVDGDGNPILNNDGNPILEQKYSVDTGTVLKIDTKARKLMSADGGEELADVSSAFSPQA
Sbjct: 301 KKVDGDGNPILNNDGNPILEQKYSVDTGTVLKIDTKARKLMSADGGEELADVSSAFSPQA 360

Query: 361 VEFMKAGGSYAVVFGKKLQTLAAETLGVEPTPVFAPAKEISHEGQGLTAVEKIFNANARG 420
           VEFMKAGGSYAVVFGKKLQTLAAETLGVEPTPVFAPAKEISHEGQGLTAVEKIFNANARG
Sbjct: 361 VEFMKAGGSYAVVFGKKLQTLAAETLGVEPTPVFAPAKEISHEGQGLTAVEKIFNANARG 420

Query: 421 VTPGKVLHAGSDVRVQVNIVGSQDTTGLMTSQELEAMAATVLSPTVDGAYQSGCHTASVW 480
           VTPGKVLHAGSDVRVQVNIVGSQDTTGLMTSQELEAMAATVLSPTVDGAYQSGCHTASVW
Sbjct: 421 VTPGKVLHAGSDVRVQVNIVGSQDTTGLMTSQELEAMAATVLSPTVDGAYQSGCHTASVW 480

Query: 481 DLKAQANTPRLMAFMHKFGLITARDPKGVYHSMTDVIHKVLNDITVSDWDIIIGGDSHTR 540
           DLKAQANTPRLMAFMHKFGLITARDPKGVYHSMTDVIHKVLNDITVSDWDIIIGGDSHTR
Sbjct: 481 DLKAQANTPRLMAFMHKFGLITARDPKGVYHSMTDVIHKVLNDITVSDWDIIIGGDSHTR 540

Query: 541 MSKGVAFGADSGTVALALATGEATMPIPESVKVTFKGKMADHMDFRDVVHATQAQMLAQH 600
           MSKGVAFGADSGTVALALATGEATMPIPESVKVTFKGKMADHMDFRDVVHATQAQMLAQH
Sbjct: 541 MSKGVAFGADSGTVALALATGEATMPIPESVKVTFKGKMADHMDFRDVVHATQAQMLAQH 600

Query: 601 GDNVFQGRVIEVHIGTLLADQAFTFTDWTAEMKAKASICISNDDTLIESLEIAKQRIQVM 660
           GDNVFQGRVIEVHIGTLLADQAFTFTDWTAEMKAKASICISNDDTLIESLEIAKQRIQVM
Sbjct: 601 GDNVFQGRVIEVHIGTLLADQAFTFTDWTAEMKAKASICISNDDTLIESLEIAKQRIQVM 660

Query: 661 IDKGMDNDVQMLAGLIAKANARIAEIRSGEKPALKPDDTARYFAEVVVDLDQIVEPMIAD 720
           IDKGMDNDVQMLAGLIAKANARIAEIRSGEKPALKPDDTARYFAEVVVDLDQIVEPMIAD
Sbjct: 661 IDKGMDNDVQMLAGLIAKANARIAEIRSGEKPALKPDDTARYFAEVVVDLDQIVEPMIAD 720

Query: 721 PDVHNADVSKRYTHDTIRPISYYGAEKKIDLGFVGSCMVHKGDVKIVAQMLRNLEKANGE 780
           PDVHNADVSKRYTHDTIRPISYYGAEKKIDLGFVGSCMVHKGDVKIVAQMLRNLEKANGE
Sbjct: 721 PDVHNADVSKRYTHDTIRPISYYGAEKKIDLGFVGSCMVHKGDVKIVAQMLRNLEKANGE 780

Query: 781 VKFKAPLVLAAPTYNIIDELKEEGDWDVLQKYAGFEFDDSAPKEKARTEYENILYLERPG 840
           VKFKAPLVLAAPTYNIIDELKEEGDWDVLQKYAGFEFDDSAPKEKARTEYENILYLERPG
Sbjct: 781 VKFKAPLVLAAPTYNIIDELKEEGDWDVLQKYAGFEFDDSAPKEKARTEYENILYLERPG 840

Query: 841 CNLCMGNQEKAAKGDTVLATSTRLFQGRVVADSETKKGESLLGSTPVVVLSAILGRTPTV 900
           CNLCMGNQEKAAKGDTVLATSTRLFQGRVVADSETKKGESLLGSTPVVVLSAILGRTPTV
Sbjct: 841 CNLCMGNQEKAAKGDTVLATSTRLFQGRVVADSETKKGESLLGSTPVVVLSAILGRTPTV 900

Query: 901 EEYKTAVEGINLTKFAPPLTPPIDAKSVHF 930
           EEYKTAVEGINLTKFAPPLTPPIDAKSVHF
Sbjct: 901 EEYKTAVEGINLTKFAPPLTPPIDAKSVHF 930


Lambda     K      H
   0.316    0.132    0.374 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 2576
Number of extensions: 84
Number of successful extensions: 1
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 930
Length of database: 930
Length adjustment: 43
Effective length of query: 887
Effective length of database: 887
Effective search space:   786769
Effective search space used:   786769
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 57 (26.6 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory