Align Tricarboxylic transport TctA (characterized, see rationale)
to candidate 3607810 Dshi_1218 protein of unknown function DUF112 transmembrane (RefSeq)
Query= uniprot:E4PJQ9 (508 letters) >lcl|FitnessBrowser__Dino:3607810 Dshi_1218 protein of unknown function DUF112 transmembrane (RefSeq) Length = 504 Score = 394 bits (1012), Expect = e-114 Identities = 210/494 (42%), Positives = 302/494 (61%), Gaps = 10/494 (2%) Query: 1 METLGFLMDGFAVALTPYNLMFALFGAFVGTLIGCLPGLGPANGVAILIPLAFTLGLPPE 60 M+ L +GFA +L+P N+ L G VG IG +PGLG NGVAI++PL F + PP Sbjct: 1 MDIFPLLAEGFATSLSPLNIFIVLIGVTVGLFIGAMPGLGSVNGVAIVLPLTFVV--PPA 58 Query: 61 TAMILLTAVYAGAMYGGRISSILLNIPGDEPAMMTCLDGYPMAQKGRAADALAVSAIASF 120 +A+ILL A+Y GAMYGG +SSILL IPG A+ T DG PMAQKG A AL +A+ASF Sbjct: 59 SAIILLCAIYYGAMYGGAVSSILLGIPGASTAVATTFDGRPMAQKGEAGLALIAAAVASF 118 Query: 121 AGGLIGTIGLIMLAPVLAKFALTFGPAEYFALFLLAFATLGGITGKNPVKTVVAATLGIM 180 GG I I A LA AL FGPAE FAL LLAF T G+ G + +KT+V LG++ Sbjct: 119 IGGTISVILFTAFAIPLADLALAFGPAEEFALVLLAFTTFVGLGGDDALKTIVMICLGLV 178 Query: 181 ISTVGIDISTGTQRYTFGVLE-LYEGIDFILAIVGLFAISELLFFVESRMGRGRDKMNVG 239 +STVG+D+ +G R FG L Y GI F++ +G++ I E+L+ +E+ + + Sbjct: 179 LSTVGLDLISGQPRLIFGDLPGFYSGISFLVLAIGVYGIGEILYTIET--SKKSPTVTAA 236 Query: 240 KLTLT-----MKELVMTIPTQLRGGVLGFISGVLPGAGASLGSFISYTLEKQVVGKKGKF 294 K+T + ++ + T G LGF G+LP AGA+ + ++Y + + K F Sbjct: 237 KITFSELGAGLRRMNKLWKTMSMGSFLGFFVGMLPAAGATPAALMAYGIARTTSKKSENF 296 Query: 295 GEGDIRGVVAPEAGNNGASSGALVPMLTLGVPGSGTTAVLLAMLISLNITPGPLMFTQNA 354 G+G+I GV APE NN AS+G+L+PMLTLG+PGS TTA+LL ++ + PGP++F + Sbjct: 297 GKGEIEGVAAPETANNAASTGSLLPMLTLGIPGSPTTALLLGGMVMWGLVPGPMLFIEQP 356 Query: 355 DIVWGVIAALLIGNVLLLVLNIPLVGFFVKLLSVPPMYLLPIVTMVAFVGIYSISHSTFD 414 D VWG+I++L NV +++N+ L+ FV L +P L +V ++ VG ++ S D Sbjct: 357 DFVWGMISSLYTANVAAVLINLALIPLFVWALRMPFTVLCSVVVVLCIVGGFAPSQKIHD 416 Query: 415 LYFMVAFGVAGYFLRKLEIPLVPIILGLLLGPEMEKNLGHALVLSDGEWSVLWASPLAMG 474 ++ + AFG+ GY LRK + PL P++L L+LGP MEK+ +LV+ G V PL+ Sbjct: 417 VWLIAAFGILGYILRKADYPLAPLVLALVLGPLMEKSFRQSLVMEQGNVFVFVERPLSAT 476 Query: 475 LWIVAGLGLILPYL 488 ++A + +LP L Sbjct: 477 FMVLALIFFLLPLL 490 Lambda K H 0.325 0.144 0.425 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 801 Number of extensions: 40 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 508 Length of database: 504 Length adjustment: 34 Effective length of query: 474 Effective length of database: 470 Effective search space: 222780 Effective search space used: 222780 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.0 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory