Align Tricarboxylic transport TctA (characterized, see rationale)
to candidate 3610834 Dshi_4220 protein of unknown function DUF112 transmembrane (RefSeq)
Query= uniprot:E4PJQ9 (508 letters) >lcl|FitnessBrowser__Dino:3610834 Dshi_4220 protein of unknown function DUF112 transmembrane (RefSeq) Length = 494 Score = 332 bits (851), Expect = 2e-95 Identities = 184/491 (37%), Positives = 282/491 (57%), Gaps = 18/491 (3%) Query: 7 LMDGFAVALTPYNLMFALFGAFVGTLIGCLPGLGPANGVAILIPLAFTLGLPPETAMILL 66 L FA+ L+P L+ G +G ++G LPG+G VA+++P FTL + A++LL Sbjct: 5 LPQAFALLLSPQGLLVLSVGTMLGIVLGALPGIGSTVAVAMILP--FTLTMDQAPAILLL 62 Query: 67 TAVYAGAMYGGRISSILLNIPGDEPAMMTCLDGYPMAQKGRAADALAVSAIASFAGGLIG 126 A+YAG++YGG IS+IL+N PG + TCLDG+PMAQ+G A AL + IAS GGL Sbjct: 63 LAIYAGSVYGGSISAILINTPGTPQSAATCLDGFPMAQRGEAGKALGWATIASVVGGLTS 122 Query: 127 TIGLIMLAPVLAKFALTFGPAEYFALFLLAFATLGGITGKNPVKTVVAATLGIMISTVGI 186 + LI AP LA FAL FGP E FAL LL + ++ + VK ++A LGI +STVG Sbjct: 123 AVVLIFAAPQLAAFALNFGPIETFALILLGLTCIVSVSEGSLVKGLMAGMLGIFLSTVGG 182 Query: 187 DISTGTQRYTFGVLELYEGIDFILAIVGLFAISELLFFVESRMGRGRDKMNVGKLTLTMK 246 D TG R+TFG +L G + + ++G+FA+SE+L R G D V + K Sbjct: 183 DPITGEARFTFGQFQLIAGFNLLAVVIGVFALSEVLI----RASSGPDSTGV---LVDFK 235 Query: 247 ELVMTIPTQLRGGVLGFIS--------GVLPGAGASLGSFISYTLEKQVVGKKGKFGEGD 298 +V+ + +G + G G+LPG GA+ +FISY ++ + FG+G+ Sbjct: 236 GIVLPRWAEWKGRLRGLAKSVAIGNGVGILPGTGAATAAFISYAEARRSAPTRANFGKGE 295 Query: 299 IRGVVAPEAGNNGASSGALVPMLTLGVPGSGTTAVLLAMLISLNITPGPLMFTQNADIVW 358 G++A E+ NN + GALVP + LG+PG TAV+LA L +TPG + N ++ Sbjct: 296 PDGLIASESANNAVTGGALVPTMALGIPGDAITAVMLATLTLHGVTPGIRLMQDNPVLMA 355 Query: 359 GVIAALLIGNVLLLVLNIPLVGFFVKLLSVPPMYLLPIVTMVAFVGIYSISHSTFDLYFM 418 + A I N++LL L + + LL + Y+L ++T++ VG++ + + FDL M Sbjct: 356 SIFAGFFIINLMLLPLGMLVSKLAAPLLRMREAYMLIVITLLCTVGVFFVRGNPFDLLVM 415 Query: 419 VAFGVAGYFLRKLEIPLVPIILGLLLGPEMEKNLGHALVLSDGEWSVLWAS-PLAMGLWI 477 G+ G+ LR+ P+ P+++G++LGP +E +L L+++DG + + P+A+GL I Sbjct: 416 AGAGIVGFVLRRQGYPMAPLVIGMVLGPTLELSLRQGLIITDGNFGAFFTGHPIALGLTI 475 Query: 478 VAGLGLILPYL 488 A L LP + Sbjct: 476 AAAGMLSLPLI 486 Lambda K H 0.325 0.144 0.425 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 779 Number of extensions: 50 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 1 Length of query: 508 Length of database: 494 Length adjustment: 34 Effective length of query: 474 Effective length of database: 460 Effective search space: 218040 Effective search space used: 218040 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.0 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory