Align isobutanoate/2-methylbutanoate--CoA ligase (EC 6.2.1.1) (characterized)
to candidate 3606823 Dshi_0253 AMP-dependent synthetase and ligase (RefSeq)
Query= metacyc::MONOMER-20125 (556 letters) >lcl|FitnessBrowser__Dino:3606823 Dshi_0253 AMP-dependent synthetase and ligase (RefSeq) Length = 519 Score = 163 bits (412), Expect = 2e-44 Identities = 141/515 (27%), Positives = 225/515 (43%), Gaps = 53/515 (10%) Query: 41 TWSQTHRRCLCLASSIASLGIENGHVVSVLAPNVPQMYELHFAVPMAGAILNAVNLRLDA 100 T +Q R A + + GI G VV+++APN+P AGA + +N Sbjct: 45 TGAQLEGRIRACAGGLRARGIGPGDVVAIMAPNMPDYATAFHGAAFAGATVTTLNPTYTT 104 Query: 101 RTISILLHHSESKLIFVDHLSRDLILEAIALFPKQAPVPRLVFMADESESGNSSELGKEF 160 + L S ++++ DL EA+ + V V M + G Sbjct: 105 EEAAHQLRDSGAQMLVTVPAFADLAAEAV----QGTGVTETVMMGTTGPGSLEALFGPPL 160 Query: 161 FCSYKDLIDRGDPDFKWVMPKSEWDPMILNYTSGTTSSPKGVVHCHRGIFIMTVDSLIDW 220 + R D ++L Y+SGTT PKGV+ HR + + + Sbjct: 161 AAQVAVDLAR--------------DIVVLPYSSGTTGLPKGVMLSHRNLVVNVDQTAEII 206 Query: 221 GVPKQPVYLWTLPMFHANGWSYPWGM-AAVGGTNICLRKFDSEIIYDMIKRHGVTHMCGA 279 G+ Q V + LP FH G + + G + + +FD E + + H + A Sbjct: 207 GITVQDVTVGFLPFFHIYGMTVLMNCYLSRGAAVVTMPRFDLEQFLSLCQTHRPRQLYIA 266 Query: 280 PVVLNMLSNAPGSEPLKTT-VQIMTAGAPPPSAVLFRT--ESLGFAVSHGYGLTETAGLV 336 P V L+ P + + V+ + +GA P + LG + GYG+TE + + Sbjct: 267 PPVALALAKHPMVDDYDLSGVEFILSGAAPLGGDVAEAVGRRLGVEMVQGYGMTEMSPV- 325 Query: 337 VSCAWKKEWNHLPATERARLKSRQGVG-TVMQTKIDVVDPVTGAAVKRDGSTLGEVVLRG 395 + ++P + VG T + +VDP TG + + GEV +RG Sbjct: 326 --SHFTPPGQNVPGS----------VGPTAPSAESRIVDPETG-----EDAAEGEVWVRG 368 Query: 396 GSVMLGYLKDPEGTAKSMTADGWFYTGDVGVMHPDGYLEIKDRSKDVIISGGENLSSVEV 455 +M GYL P+ TA+++T DGW TGD+G G L I DR K++I G ++ E+ Sbjct: 369 PQIMQGYLNRPDATAETVTRDGWLKTGDLGRFDEAGNLFITDRVKELIKVSGFQVAPAEL 428 Query: 456 ESILYSHPDILEAAVVARPDEFWGETPCAFVSLKKGLTKKP--TEKEIVEYCRSKLPRYM 513 E++L +HP I +AAV+ PD+ GE P AFV + P +E ++ + L Y Sbjct: 429 EAVLLTHPAITDAAVIGVPDDSAGERPMAFV-----VRSDPDLSEGAVIAHAAEHLAHYK 483 Query: 514 VPKTVVFKEELPKTSTGKVQKFILR-----DMARG 543 V F E +PK+++GK+ + +LR DMA G Sbjct: 484 RIARVAFVEAVPKSASGKILRRLLRAKVGEDMATG 518 Lambda K H 0.319 0.135 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 692 Number of extensions: 37 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 556 Length of database: 519 Length adjustment: 35 Effective length of query: 521 Effective length of database: 484 Effective search space: 252164 Effective search space used: 252164 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory