Align sodium/glucose cotransporter 1 (characterized)
to candidate 3610523 Dshi_3904 SSS sodium solute transporter superfamily (RefSeq)
Query= CharProtDB::CH_091086 (664 letters) >lcl|FitnessBrowser__Dino:3610523 Dshi_3904 SSS sodium solute transporter superfamily (RefSeq) Length = 526 Score = 274 bits (701), Expect = 7e-78 Identities = 164/530 (30%), Positives = 277/530 (52%), Gaps = 63/530 (11%) Query: 28 DISIIVIYFVVVMAVGLWAMFSTNRGTVGGFFLAGRSMVWWPIGASLFASNIGSGHFVGL 87 D +I +Y +V+A+G+W T G FLAGRS+ W IG SLFASNI + VGL Sbjct: 13 DYGVIAVYLAIVIAIGVWVARKTRTGE--DLFLAGRSLGWAAIGFSLFASNISTSTLVGL 70 Query: 88 AGTGAASGIAIGGFEWNALVLVVVLGWLFVPIYIKAGVVTMPEYLRKRFGGQRIQVYLSL 147 G+ G+ + +EW A + ++ + ++F P+++K+ + T PEYL R+ +R+++Y S Sbjct: 71 TGSAYTGGLTVSSYEWMAGIPLLFMAFIFAPVFLKSRISTTPEYLENRY-SRRVRLYFSG 129 Query: 148 LSLLLYIFTKISADIFSGAIFINLAL-GLNLYLAIFLLLAITALYTITGGLAAVIYTDTL 206 L+++ + + +++GA+ + + L+++++ + +YT TGGL AV+YTD L Sbjct: 130 LTIVFTVIVDTAGGLYAGAVVLKVFFPDLDIWMSCVAIGLFAGIYTATGGLRAVVYTDIL 189 Query: 207 QTVIMLVGSLILTGFAFHEVGGYDAFMEKYMKAIPTIVSDGNTTFQEKCYTPRADSFHIF 266 Q V+++ G+ LT F ++ D E +P +G+ + + Sbjct: 190 QAVVLICGT-GLTAFLMYQ--SVDFSWESVRSQVP----EGHLSIVQ------------- 229 Query: 267 RDPLTGD-LPWPGFIFGMSILTLWYWCTDQVIVQRCLSAKNMSHVKGGCILCGYLKLMPM 325 P+ D LPWPG G+ +L WYW T+Q IVQR L AK++S+ + G IL G LK++P Sbjct: 230 --PIDDDTLPWPGLFTGVWLLGFWYWVTNQYIVQRVLGAKDLSNAQWGAILGGILKILPT 287 Query: 326 FIMVMPGMISRILYTEKIACVVPSECEKYCGTKVGCTNIAYPTLVVELMPNGLRGLMLSV 385 F +++PG+++ + + + ++ +P ++ E++P+GL GL+++ Sbjct: 288 FFIILPGVMALVTLPD-----------------IQNSDQVFPIIITEVLPSGLTGLVMAG 330 Query: 386 MLASLMSSLTSIFNSASTLFTMDIYAKVRKRASEKELMIAGRLFILVLIGISIAWVPIVQ 445 ++A++MS++ S NS+STL D + K + G + L + I+IAW P++Q Sbjct: 331 LIAAIMSTVDSTLNSSSTLLINDFLTRPEKEPDPETAKKWGMMATLGFMVIAIAWAPLIQ 390 Query: 446 SAQSGQLFDYIQSITSYLGPPIAAVFLLAIFWKRVNEPGAFWGLILGLLIG-ISRMITEF 504 G L+ YIQ S L PP+ F L W R E AFW LI+G +G + M+ +F Sbjct: 391 --YFGGLWAYIQQAFSVLVPPLVVCFTLGALWSRGTENAAFWTLIIGHTLGLVVFMLNQF 448 Query: 505 AYGTGSCMEPSNCPTIICGVHYLYFAIILFAISFITIVVISLLTKPIPDV 554 I +HY I+ A+S V +S L PDV Sbjct: 449 G---------------IWPLHYTISVTIMTAVSAAIFVALS-LRDDTPDV 482 Lambda K H 0.327 0.141 0.436 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 773 Number of extensions: 29 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 664 Length of database: 526 Length adjustment: 37 Effective length of query: 627 Effective length of database: 489 Effective search space: 306603 Effective search space used: 306603 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory