GapMind for catabolism of small carbon sources

 

Aligments for a candidate for gntB in Dinoroseobacter shibae DFL-12

Align TRAP-type large permease component (characterized, see rationale)
to candidate 3610328 Dshi_3709 TRAP dicarboxylate transporter, DctM subunit (RefSeq)

Query= uniprot:Q930R2
         (425 letters)



>FitnessBrowser__Dino:3610328
          Length = 420

 Score =  297 bits (760), Expect = 5e-85
 Identities = 154/410 (37%), Positives = 251/410 (61%), Gaps = 12/410 (2%)

Query: 17  GVPVAFSLMFCGVVLMWYMGMFNTQIIA---QNMIAGADTFTLLAIPFFILAGELMNAGG 73
           GVP+A  L    ++ +W  G  N  +     Q +  G + + LLAIP F+L GELMN GG
Sbjct: 13  GVPIALVLAITAMIYIWASG--NDVLFLSYPQQLYGGLEKYGLLAIPLFMLVGELMNEGG 70

Query: 74  LSRRIIDFAIACVGHIRGGLGIVAIMAAVIMASISGSAAADTAALAAILIPMMAKAGYNV 133
           +++R++ FA   VG +RGGL  + ++A + MA+I GS  A  A +  +++P M K GY+ 
Sbjct: 71  ITKRLVKFASVFVGSLRGGLAYINLVANMFMAAIIGSTNAQIAVMGHVMVPEMVKRGYDR 130

Query: 134 PRSAGLIAAGGVIAPVIPPSMAFIVFGVAANVSITQLFMAGIVPGLIMGIALVATWLLVV 193
             +A + AAGG+++P+IPPSM F+++GV A +SI  +F+AGI+PGL+MG A +   L+VV
Sbjct: 131 NFAAAVTAAGGLMSPIIPPSMLFVIYGVLAQISIGDMFIAGIIPGLLMGAAFI---LVVV 187

Query: 194 RKDDIQPLPRTPMKERVGATG---RALWALGMPVIILGGIKAGVVTPTEAAVVAAVYALF 250
                   P      R  A     RAL +L +PV+I+GGI  G+ TPTE+A VA+V A+ 
Sbjct: 188 VLGFFYTYPTEAKLSRGMAVSHILRALPSLSIPVVIIGGIAGGIATPTESAAVASVAAII 247

Query: 251 VGMVIYRELKPRDLPGVILQAAKTTAVIMFLVCAALVSSWLITAANIPSEITGFISPLID 310
           VG   +RE  P  +PG++++   ++++++FLV  A V  W+I    IP  +  ++  L +
Sbjct: 248 VGWAFHREFDPSHIPGMLVRLLASSSMVLFLVATANVFGWIIVYEKIPQNLAAYLVTLTE 307

Query: 311 RPTLLMFVIMLVVLVVGTALDLTPTILILTPVLMPI-IKQAGIDPVYFGVLFIMNTCIGL 369
            P + M ++ +++L+VGT +D    ++++ P+++PI +   GIDP +FGV   +N  IGL
Sbjct: 308 NPIVFMLLLNVMLLLVGTVIDAIAALILVVPIMLPIAMLSYGIDPFHFGVAVCLNLVIGL 367

Query: 370 LTPPVGVVLNVVSGVGRVPLGKVIVGVTPFLVAQILVLFLLVLFPDIVIV 419
           LTPPVG  L V + V       ++  + PFL+A +++L L+ ++P + +V
Sbjct: 368 LTPPVGTALYVTAQVSNCKPMSIMKPLAPFLLAALVILLLVSVWPALTLV 417


Lambda     K      H
   0.331    0.145    0.430 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 488
Number of extensions: 27
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 425
Length of database: 420
Length adjustment: 32
Effective length of query: 393
Effective length of database: 388
Effective search space:   152484
Effective search space used:   152484
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 15 ( 7.2 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 40 (21.9 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory