GapMind for catabolism of small carbon sources

 

Alignments for a candidate for gntB in Dinoroseobacter shibae DFL-12

Align TRAP-type large permease component (characterized, see rationale)
to candidate 3610328 Dshi_3709 TRAP dicarboxylate transporter, DctM subunit (RefSeq)

Query= uniprot:Q930R2
         (425 letters)



>FitnessBrowser__Dino:3610328
          Length = 420

 Score =  297 bits (760), Expect = 5e-85
 Identities = 154/410 (37%), Positives = 251/410 (61%), Gaps = 12/410 (2%)

Query: 17  GVPVAFSLMFCGVVLMWYMGMFNTQIIA---QNMIAGADTFTLLAIPFFILAGELMNAGG 73
           GVP+A  L    ++ +W  G  N  +     Q +  G + + LLAIP F+L GELMN GG
Sbjct: 13  GVPIALVLAITAMIYIWASG--NDVLFLSYPQQLYGGLEKYGLLAIPLFMLVGELMNEGG 70

Query: 74  LSRRIIDFAIACVGHIRGGLGIVAIMAAVIMASISGSAAADTAALAAILIPMMAKAGYNV 133
           +++R++ FA   VG +RGGL  + ++A + MA+I GS  A  A +  +++P M K GY+ 
Sbjct: 71  ITKRLVKFASVFVGSLRGGLAYINLVANMFMAAIIGSTNAQIAVMGHVMVPEMVKRGYDR 130

Query: 134 PRSAGLIAAGGVIAPVIPPSMAFIVFGVAANVSITQLFMAGIVPGLIMGIALVATWLLVV 193
             +A + AAGG+++P+IPPSM F+++GV A +SI  +F+AGI+PGL+MG A +   L+VV
Sbjct: 131 NFAAAVTAAGGLMSPIIPPSMLFVIYGVLAQISIGDMFIAGIIPGLLMGAAFI---LVVV 187

Query: 194 RKDDIQPLPRTPMKERVGATG---RALWALGMPVIILGGIKAGVVTPTEAAVVAAVYALF 250
                   P      R  A     RAL +L +PV+I+GGI  G+ TPTE+A VA+V A+ 
Sbjct: 188 VLGFFYTYPTEAKLSRGMAVSHILRALPSLSIPVVIIGGIAGGIATPTESAAVASVAAII 247

Query: 251 VGMVIYRELKPRDLPGVILQAAKTTAVIMFLVCAALVSSWLITAANIPSEITGFISPLID 310
           VG   +RE  P  +PG++++   ++++++FLV  A V  W+I    IP  +  ++  L +
Sbjct: 248 VGWAFHREFDPSHIPGMLVRLLASSSMVLFLVATANVFGWIIVYEKIPQNLAAYLVTLTE 307

Query: 311 RPTLLMFVIMLVVLVVGTALDLTPTILILTPVLMPI-IKQAGIDPVYFGVLFIMNTCIGL 369
            P + M ++ +++L+VGT +D    ++++ P+++PI +   GIDP +FGV   +N  IGL
Sbjct: 308 NPIVFMLLLNVMLLLVGTVIDAIAALILVVPIMLPIAMLSYGIDPFHFGVAVCLNLVIGL 367

Query: 370 LTPPVGVVLNVVSGVGRVPLGKVIVGVTPFLVAQILVLFLLVLFPDIVIV 419
           LTPPVG  L V + V       ++  + PFL+A +++L L+ ++P + +V
Sbjct: 368 LTPPVGTALYVTAQVSNCKPMSIMKPLAPFLLAALVILLLVSVWPALTLV 417


Lambda     K      H
   0.331    0.145    0.430 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 488
Number of extensions: 27
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 425
Length of database: 420
Length adjustment: 32
Effective length of query: 393
Effective length of database: 388
Effective search space:   152484
Effective search space used:   152484
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 15 ( 7.2 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 40 (21.9 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory