Align D-mannonate oxidoreductase; EC 1.1.1.57; Fructuronate reductase (uncharacterized)
to candidate 3607557 Dshi_0969 Mannitol dehydrogenase domain (RefSeq)
Query= curated2:P39160 (486 letters) >lcl|FitnessBrowser__Dino:3607557 Dshi_0969 Mannitol dehydrogenase domain (RefSeq) Length = 499 Score = 297 bits (760), Expect = 6e-85 Identities = 187/480 (38%), Positives = 261/480 (54%), Gaps = 12/480 (2%) Query: 9 LPVARPSWDHSRLESRIVHLGCGAFHRAHQALYTHHLLESTDS-DWGICEVNLMPGNDRV 67 L + RP +D SRL IVH+G G FHRAHQA Y H L+++ + DW I + P D Sbjct: 15 LAIERPRYDRSRLTPGIVHIGVGNFHRAHQAWYLHRLMQAGQALDWAIIGAGVRP-YDAA 73 Query: 68 LIENLKKQQLLYTVAEKGAESTELKIIGSMKEALHPEIDGCEGILNAMARPQTAIVSLTV 127 + + L Q L T+ E ++ +++GSM + L P +DG ++ MA P IV++TV Sbjct: 74 MRDKLLAQDCLTTLIELAPDNVSAEVVGSMIDYL-PIVDGNGPLIAQMADPAIRIVAMTV 132 Query: 128 TEKGYCADAASGQLDLNNPLIKHDLENPTAPKSAIGYIVEALRLRREKGLKAFTVMSCDN 187 TE GY D + D ++P + HD P P++A G IV ALR RR G FT +SCDN Sbjct: 133 TESGYYIDPVTKGFDASHPDLVHDAAQPDRPRTAFGAIVAALRARRAAGHGPFTCLSCDN 192 Query: 188 VRENGHVAKVAVLGLAQARDPQLAAWIEENVTFPCTMVDRIVPAATPETLQEIADQLGVY 247 ++ NG + + V+ LA+ DP LA WI+ + +FP +MVD I PA P+ L +A Q G+ Sbjct: 193 LQGNGDILRQTVVSLARLTDPALADWIDTHASFPNSMVDCIAPATGPKELA-LAAQFGIR 251 Query: 248 DPCAIACEPFRQWVIEDNFVNGRPDWDKVGAQFVADVVPFEMMKLRMLNGSHSFLAYLGY 307 D + E FRQWVIED F GRP+WD VGA F DV +E MK+R+LN H LA G Sbjct: 252 DVAVVTHEAFRQWVIEDEFCAGRPNWDAVGATFSDDVHAYETMKIRILNAGHQVLANAGE 311 Query: 308 LGGYETIADTVTNPAYRKAAFALMMQEQAPTLSMPEGTDLNAYATLLIERFSNPSLRHRT 367 G ETI+ + +P + +E APT++ G +Y L+ RF+NP + T Sbjct: 312 NLGIETISGCMAHPGIAAFFGKVQREEIAPTVAPVPGKTPASYVNLIETRFANPRIVDTT 371 Query: 368 WQIAMDGSQKLPQRLLDPVRLHLQNGGSWRHLALGVAGWMRYTQGVDEQGNAIDVVDPML 427 ++A DGS + P +L VR L G S LAL A W R GV E G I DP+ Sbjct: 372 RRVAFDGSARHPGFVLPIVRDQLAAGRSVEGLALVEALWARMCAGVREDGTEIAPNDPL- 430 Query: 428 AEFQKINAQYQGADRVKAL-LGLSGIFADDLPQNADFVGAVTAAYQQLCERGARECVAAL 486 + ++ + A AL LG +G++ DL Q+ F A A + ++G C AAL Sbjct: 431 --WDRLAPVARAARTDPALWLGQTGLYG-DLKQSEPFADAFCAWLVLIWDKG---CEAAL 484 Lambda K H 0.320 0.135 0.408 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 655 Number of extensions: 32 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 486 Length of database: 499 Length adjustment: 34 Effective length of query: 452 Effective length of database: 465 Effective search space: 210180 Effective search space used: 210180 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory