Align Methylcrotonoyl-CoA carboxylase (EC 6.4.1.4) (characterized)
to candidate 3609096 Dshi_2485 pyruvate carboxylase (RefSeq)
Query= reanno::pseudo6_N2E2:Pf6N2E2_2194 (649 letters) >FitnessBrowser__Dino:3609096 Length = 1145 Score = 361 bits (926), Expect = e-103 Identities = 198/446 (44%), Positives = 278/446 (62%), Gaps = 9/446 (2%) Query: 9 LLVANRGEIACRVMRTAKAMGLTTVAVHSATDRDARHSREADIRVDLG-GSKAADSYLQI 67 +L+ANRGEIA RVMR A +G TVAV++ D+ H +AD +G G +YL I Sbjct: 7 ILIANRGEIAIRVMRAANELGKKTVAVYAEEDKLCLHRFKADEAYKIGEGLGPVAAYLSI 66 Query: 68 DKLIAAAKASGAQAIHPGYGFLSENAGFARAIENAGLIFLGPPASAIDAMGSKSAAKALM 127 D++I AK SGA AIHPGYG LSEN F A G+ F+GP A + A+G K++A+ + Sbjct: 67 DEIIRVAKLSGADAIHPGYGLLSENPDFVDACVANGIAFIGPRAETMRALGDKASARRVA 126 Query: 128 ETAGVPLVPGYHGEAQDLETFRDAAERIGYPVLLKATAGGGGKGMKVVEDVSQLAEALAS 187 AGVP++P D++ R AE IG+P++LKA+ GGGG+GM+ + D ++A+ + Sbjct: 127 IEAGVPVIPATEVLGDDMDKVRAEAEAIGFPLMLKASWGGGGRGMRPIFDPDEVADKVRE 186 Query: 188 AQREAQSSFGDSRMLVEKYLLKPRHVEIQVFADQHGNCLYLNERDCSIQRRHQKVVEEAP 247 +REA+++FG+ +EK + + RHVE+Q+ D GN +L ERDCS+QRR+QKVVE AP Sbjct: 187 GRREAEAAFGNGEGYLEKMITRARHVEVQILGDSMGNIYHLWERDCSVQRRNQKVVERAP 246 Query: 248 APGLTAQLRQAMGEAAVRAAQAIGYVGAGTVEFLLDA-RGEFFFMEMNTRLQVEHPVTEA 306 AP L++ R+ + E + + Y AGTVEFL+D GEFFF+E+N R+QVEH VTE Sbjct: 247 APYLSSSQREQLCELGRKICAHVNYECAGTVEFLMDMDTGEFFFIEVNPRVQVEHTVTEE 306 Query: 307 ITGLDLVAWQIRVAQGEPL-----PITQAQVPLLGHAIEVRLYAEDPVNDFLPATGRLAL 361 +TG+D+V QI +A+G+ L +Q V L GHAI+ R+ EDP N+F+P GR+ Sbjct: 307 VTGIDIVRAQILIAEGKSLVEATGMASQYDVQLNGHAIQCRITTEDPQNNFIPDYGRITA 366 Query: 362 YRESAKGPGRRVDSGVE-EGDEISPFYDPMLGKLIAWGENREQARLRLLSMLDEFAIGGL 420 YR A G G R+D G G I+ +YD +L K+ AW E A R+ L EF I G+ Sbjct: 367 YR-GATGMGIRLDGGTAYSGAVITRYYDSLLEKVTAWAPTPEAAIARMDRALREFRIRGV 425 Query: 421 KTNIGFLRRIVAHPAFAAAELDTGFI 446 TNI F+ ++ HP F + T FI Sbjct: 426 STNIAFVENLLKHPTFLNNQYTTKFI 451 Score = 44.3 bits (103), Expect = 3e-08 Identities = 24/67 (35%), Positives = 33/67 (49%) Query: 582 LAAPMNGSIVRVLVSVGQPVDAGAQLVVLEAMKMEHSIRAPKAGVIKALYCQEGEMVSEG 641 + APM G + V V G V G L+ +EAMKME I A + V+KA++ + Sbjct: 1079 VGAPMPGVVASVAVQAGASVKEGDLLLTIEAMKMETGIHAERDAVVKAVHVTPAAQIDAK 1138 Query: 642 SALVAFE 648 LV E Sbjct: 1139 DLLVELE 1145 Lambda K H 0.319 0.134 0.389 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1597 Number of extensions: 70 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 649 Length of database: 1145 Length adjustment: 42 Effective length of query: 607 Effective length of database: 1103 Effective search space: 669521 Effective search space used: 669521 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 56 (26.2 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory