Align Methylcrotonoyl-CoA carboxylase (EC 6.4.1.4) (characterized)
to candidate 3607892 Dshi_1300 Propionyl-CoA carboxylase (RefSeq)
Query= reanno::Smeli:SM_b21122 (535 letters) >lcl|FitnessBrowser__Dino:3607892 Dshi_1300 Propionyl-CoA carboxylase (RefSeq) Length = 534 Score = 810 bits (2091), Expect = 0.0 Identities = 395/524 (75%), Positives = 451/524 (86%) Query: 12 SEEFKANRAAMTEAIATIEDAVRLAAAGGGETARERHVSRGKLLPRDRLATLIDPGTPFL 71 + E ANRAA A+A + LAAAGGGE AR RHV+RGK+LPRDR+A L+DPG+PFL Sbjct: 11 TSEGAANRAAHLAALAQVSQVAALAAAGGGEAARARHVARGKMLPRDRVANLLDPGSPFL 70 Query: 72 EVGATAAYGMYNDDAPGAGLITGIGRISARECMIVCNDPTVKGGTYYPLTVKKHLRAQEI 131 EVGATA +G+++ AP G I G+GR+ ++ M+VCND TVKGGTYYP+TVKKHLRAQEI Sbjct: 71 EVGATAGHGLHDGAAPCGGAIAGVGRVHGQDVMVVCNDATVKGGTYYPITVKKHLRAQEI 130 Query: 132 AAENRLPCVYLVDSGGANLPNQDEVFPDRDHFGRIFYNQANMSAAGIPQIAVVMGSCTAG 191 AAE LPC+YLVDSGGANLPNQDEVFPDRDHFGRIFYNQA MSAAGIPQIAVVMGSCTAG Sbjct: 131 AAECHLPCIYLVDSGGANLPNQDEVFPDRDHFGRIFYNQARMSAAGIPQIAVVMGSCTAG 190 Query: 192 GAYVPAMSDEAIIVEKQGTIFLAGPPLVRAATGEVVSAEDLGGADVHTRLSGVADHLARD 251 GAYVPAMSD IIV+ QGTIFLAGPPLV+AATGEVVSAEDLGG DVHTRLSGVAD LA D Sbjct: 191 GAYVPAMSDVTIIVKAQGTIFLAGPPLVKAATGEVVSAEDLGGGDVHTRLSGVADALAED 250 Query: 252 DAHALALARRAVSALNREKPWTVERIEPEPPLYDPEEIAGIVPADLKTPYEIREVIARLV 311 DAHALALAR+AV++LNR P +V PE P YDPEE+ +VPA L PY+I EVIAR+V Sbjct: 251 DAHALALARQAVASLNRAAPSSVVWQSPEAPAYDPEELLELVPASLSVPYDIHEVIARIV 310 Query: 312 DGSRFDEFKARFGTTLVCGFAHVHGIPVGIVANNGVLFSESAVKGAHFVELCAQRRIPLV 371 DGSRFD FK RFG TLV GFAH+ G PVGIVANNGVLFSE+A KGAHFVELC+QR+IPLV Sbjct: 311 DGSRFDAFKPRFGETLVTGFAHIEGCPVGIVANNGVLFSEAAQKGAHFVELCSQRKIPLV 370 Query: 372 FLQNITGFMVGRKYETEGIAKHGAKLVTAVATVKVPKITMLVGGSFGAGNYGMCGRAFSP 431 FLQNITGFMVGR+YE EGIA+HGAK+VTAVAT VPKITM+VGGSFGAGNYGM GRA+ P Sbjct: 371 FLQNITGFMVGRQYENEGIARHGAKMVTAVATTAVPKITMVVGGSFGAGNYGMAGRAYQP 430 Query: 432 RFLWTWPNSRISVMGGEQAAGVLSSVRGEALKRSGKPWSEEEEARFRQPVLDLFERQSHP 491 RF+W+WP+SRISVMGG QAAGVL++V+ +A++R G WS +EEA F+QP +++FE QSHP Sbjct: 431 RFMWSWPSSRISVMGGAQAAGVLATVKRDAIERKGGSWSAQEEAAFKQPTIEMFEAQSHP 490 Query: 492 LYASARLWDDGVIDPRKSRDVLALSLSAALNAPIEETRFGLFRM 535 LYASARLWDDG++DPRKSR VL+LSL AALNAPIEETRFG+FRM Sbjct: 491 LYASARLWDDGIVDPRKSRAVLSLSLRAALNAPIEETRFGVFRM 534 Lambda K H 0.320 0.136 0.404 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 883 Number of extensions: 36 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 535 Length of database: 534 Length adjustment: 35 Effective length of query: 500 Effective length of database: 499 Effective search space: 249500 Effective search space used: 249500 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory