Align Monosaccharide-transporting ATPase, component of Glucose porter. Also bind xylose (Boucher and Noll 2011). Induced by glucose (Frock et al. 2012). Directly regulated by glucose-responsive regulator GluR (characterized)
to candidate 3609459 Dshi_2843 ABC transporter related (RefSeq)
Query= TCDB::G4FGN3 (494 letters) >FitnessBrowser__Dino:3609459 Length = 548 Score = 322 bits (824), Expect = 3e-92 Identities = 190/506 (37%), Positives = 292/506 (57%), Gaps = 20/506 (3%) Query: 3 PILEVKSIHKRFPGVHALKGVSMEFYPGEVHAIVGENGAGKSTLMKIIAGVYQPDEGEII 62 P +E++ I K F V A K +S+ PG +H I+GENGAGKSTLM I+ G Y+ D GEI Sbjct: 24 PAIELRGISKAFGPVQANKDISIRVMPGTIHGIIGENGAGKSTLMSILYGFYKADAGEIF 83 Query: 63 YEGRGVRWNHPSEAINAGIVTVFQELSVMDNLSVAENIFMGDEEK---RGIFIDYKKMYR 119 +G+ AI AGI VFQ +++N +V EN+ +G EE R +K+ R Sbjct: 84 IKGQKTEIPDSQAAIRAGIGMVFQHFKLVENFTVLENVVLGAEEGALLRPSLAKARKLLR 143 Query: 120 EAEKFMKEEFGIEIDPEEKLGKYSIAIQQMVEIARAVYKKAKVLILDEPTSSLTQKETEK 179 E + EE+ + + P+ + S+ QQ VEI +A+Y+KA +LILDEPT LT E + Sbjct: 144 E----LSEEYELNVAPDALIEDLSVGHQQRVEILKALYRKADILILDEPTGVLTPAEADH 199 Query: 180 LFEVVKSLKEKGVAIIFISHRLEEIFEICDKVSVLRDGEYIGTDSIENLTKEKIVEMMVG 239 LF +++ LK +G II I+H+L EI E D VSV+R GE T + + E++ E+MVG Sbjct: 200 LFRILEGLKAEGKTIILITHKLREIMETTDTVSVMRRGEMTATVKTADTSPEQLAELMVG 259 Query: 240 RKLEKFYIKEAHEPGEVVLEVKNL------SGERFENVSFSLRRGEILGFAGLVGAGRTE 293 RK+ K +PG +L V +L ER + +S +R GE+LG AG+ G G++E Sbjct: 260 RKVLLRVDKTPAQPGAPILTVDDLRVVDDQGVERVKGISLQVRAGEVLGIAGVAGNGQSE 319 Query: 294 LMETIFGFRPKRGGEIYIEGKRVEI----NHPLDAIEQGIGLVPEDRKKLGLILIMSIMH 349 L+E + G RP G + + G+++++ ++ QGI VPEDR+ GLI+ Sbjct: 320 LLEVLGGMRPAT-GRVTVSGQQIDLTGKHSNGKTRRAQGIAHVPEDRQAEGLIMDYHAWE 378 Query: 350 NVSLPSLD--RIKKGPFISFKREKELADWAIKTFDIRPAYPDRKVLYLSGGNQQKVVLAK 407 NV+ D +G + + + A+ I FD+RPA SGGNQQK+VLA+ Sbjct: 379 NVAFGYHDDPAYNRGLLMDNRAVRADAEGKIARFDVRPADCWLAAKNFSGGNQQKIVLAR 438 Query: 408 WLALKPKILILDEPTRGIDVGAKAEIYRIMSQLAKEGVGVIMISSELPEVLQMSDRIAVM 467 + P++L++ +PTRG+D+GA I++ + L G ++++S EL E+L +SDR+AVM Sbjct: 439 EIERNPELLLVGQPTRGVDIGAIEFIHQQIIALRDAGKAILLVSVELEEILSLSDRVAVM 498 Query: 468 SFGKLAGIIDAKEASQEKVMKLAAGL 493 G++ G A E +++++ L AG+ Sbjct: 499 FDGRIMGERPAAETNEKELGLLMAGI 524 Lambda K H 0.318 0.138 0.385 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 707 Number of extensions: 44 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 494 Length of database: 548 Length adjustment: 35 Effective length of query: 459 Effective length of database: 513 Effective search space: 235467 Effective search space used: 235467 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory