Align Inositol transport ATP-binding protein IatA, component of The myoinositol (high affinity)/ D-ribose (low affinity) transporter IatP/IatA/IbpA. The structure of IbpA with myoinositol bound has been solved (characterized)
to candidate 3607108 Dshi_0530 ABC transporter related (RefSeq)
Query= TCDB::B8H229 (515 letters) >lcl|FitnessBrowser__Dino:3607108 Dshi_0530 ABC transporter related (RefSeq) Length = 498 Score = 332 bits (852), Expect = 1e-95 Identities = 197/501 (39%), Positives = 299/501 (59%), Gaps = 16/501 (3%) Query: 4 LDVSQVSKSFPGVRALDQVDLVVGVGEVHALLGENGAGKSTLIKILSAAHAADAGTVTFA 63 +D+ ++K + GV ALD VD V GE L GENG+GKSTLIKI+S A AGTV A Sbjct: 10 IDLRAITKRYAGVTALDSVDFTVQPGEAVCLAGENGSGKSTLIKIISGVEPATAGTVQIA 69 Query: 64 GQ---VLDPRDAPLRRQQLGIATIYQEFNLFPELSVAENM-YLGREPRRLGLVDWSRLRA 119 GQ L+PR + G+ I+Q+F+LFP LSVAEN+ + + R L + +R Sbjct: 70 GQEHVTLNPRISAAA----GVMVIFQDFSLFPNLSVAENIAFTTQLSTRQRLFKFRAVRD 125 Query: 120 DAQALLNDLGLPLNPDAPVRGLTVAEQQMVEIAKAMTLNARLIIMDEPTAALSGREVDRL 179 A+A L+ +G+ ++ DA V L VA++Q+V I +A+ A+LIIMDEPT AL+ +EV RL Sbjct: 126 IARAALDRIGVQIDLDARVETLPVAQKQLVAICRALASKAQLIIMDEPTTALTEKEVRRL 185 Query: 180 HAIIAGLKARSVSVIYVSHRLGEVKAMCDRYTVMRDGRFVASGDVADVEVADMVRLMVGR 239 II LK V+VI+VSH+L EV + ++ V+R+G+ VA G ++ + + M GR Sbjct: 186 QGIIRMLKEEGVAVIFVSHKLAEVLEVSEKVVVLRNGKKVAEGPASEFDTQSLTYHMTGR 245 Query: 240 HVEFERRKRRRPPGAVVLKVEGVTPAAPRLSAPGYLRQVSFAARGGEIVGLAGLVGAGRT 299 V +++V+G+ A G +SF R GE++G+ GL+G GRT Sbjct: 246 DVPEVPPSDVAAGAQTLMQVQGLGKA-------GSFSDISFDLRTGEVLGITGLLGCGRT 298 Query: 300 DLARLIFGADPIAAGRVLVDDKPLRLRSPRDAIQAGIMLVPEDRKQQGCFLDHSIRRNLS 359 +A+ +FG AG +LVD P+ L P+ A A I VPEDR +G FL SI RN++ Sbjct: 299 SVAKALFGLVTPDAGSILVDGSPVPLGDPQAASLARIGYVPEDRLTEGLFLSQSILRNVA 358 Query: 360 LPSLKALSALGQWVDERAERDLVETYRQKLRIKMADAETAIGKLSGGNQQKVLLGRAMAL 419 + L A ++ G ++D + ++L++K D E + LSGGNQQ+V L R ++ Sbjct: 359 VGRLDAHTS-GGFLDMTGLAKEASDWLRRLKVKAPDVEAPVQSLSGGNQQRVALARWLSR 417 Query: 420 TPKVLIVDEPTRGIDIGAKAEVHQVLSDLADLGVAVVVISSELAEVMAVSDRIVVFREGV 479 P+VLI++ P+ G+D+G+KA++H ++ +LA G+ V+VIS +L E++A R++V REG Sbjct: 418 APRVLILNGPSVGVDVGSKADIHDIIRELAREGIGVIVISDDLPELLATCHRVLVMREGR 477 Query: 480 IVADLDAQTATEEGLMAYMAT 500 I+ L+ TE+ L +A+ Sbjct: 478 IIDALEGTALTEDDLAHRLAS 498 Lambda K H 0.320 0.136 0.380 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 583 Number of extensions: 23 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 515 Length of database: 498 Length adjustment: 34 Effective length of query: 481 Effective length of database: 464 Effective search space: 223184 Effective search space used: 223184 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory