GapMind for catabolism of small carbon sources

 

Alignments for a candidate for proV in Dinoroseobacter shibae DFL-12

Align glycine betaine/l-proline transport atp-binding protein prov (characterized)
to candidate 3608030 Dshi_1437 glycine betaine/L-proline ABC transporter, ATPase subunit (RefSeq)

Query= CharProtDB::CH_001555
         (400 letters)



>FitnessBrowser__Dino:3608030
          Length = 351

 Score =  279 bits (714), Expect = 8e-80
 Identities = 158/341 (46%), Positives = 219/341 (64%), Gaps = 13/341 (3%)

Query: 5   LEIKNLYKIFGEHPQRAFKYI-EQGLSKEQILEKTGLSLGVKDASLAIEEGEIFVIMGLS 63
           +EI N++KIFG + Q A + + ++GLSK +IL +    +GV D SL++  GEIF IMGLS
Sbjct: 7   IEISNVWKIFGANAQAALEAVRDRGLSKAEILAEFNAVVGVADVSLSVRRGEIFCIMGLS 66

Query: 64  GSGKSTMVRLLNRLIEPTRGQVLIDGVDIAKISDAELREVRRKKIAMVFQSFALMPHMTV 123
           GSGKST+VR  NRL+EPT G++ I+G D+  +   EL+  R ++I MVFQ+FALMPH +V
Sbjct: 67  GSGKSTLVRHFNRLLEPTAGRIEIEGTDVMALGTQELQRFRNRQIGMVFQNFALMPHRSV 126

Query: 124 LDNTAFGMELAGINAEERREKALDALRQVGLENYAHSYPDELSGGMRQRVGLARALAINP 183
           LDN A  +E+  +   ER  +A   L  V L  +   +  EL GGM+QRVGLARALA NP
Sbjct: 127 LDNVAMPLEIRKVPKNERMRQAAAILDIVELGAWGAKFAHELPGGMQQRVGLARALAANP 186

Query: 184 DILLMDEAFSALDPLIRTEMQDELVKLQAKHQRTIVFISHDLDEAMRIGDRIAIMQNGEV 243
           D+LLMDE FSALDPLIR ++QDE ++L    ++T +FI+HDLDEA+RIGDRIAIM++G+V
Sbjct: 187 DVLLMDEPFSALDPLIRRQLQDEFIRLSKILKKTTIFITHDLDEAVRIGDRIAIMRDGKV 246

Query: 244 VQVGTPDEILNNPANDYVRTFFRGVDISQVFSAKDIARRTPNGLIRKTPGFGPRSALKLL 303
           VQ+GT ++I+ +PA+DYV  F  G+   +V  A  + +  P      T G  P +  K+ 
Sbjct: 247 VQMGTAEDIVMHPADDYVADFVAGISRLKVVHAHAVMQ--PLEAYLATHGPLPAAVPKV- 303

Query: 304 QDEDREYGYVIERGNKFVGAVSIDSLKTALTQQQGLDAALI 344
            DE      +I         ++ID     L Q  G D  +I
Sbjct: 304 -DEGETLSNLI--------TLAIDDENPILVQDAGRDVGII 335



 Score = 24.6 bits (52), Expect = 0.005
 Identities = 12/30 (40%), Positives = 16/30 (53%)

Query: 355 PLSELLSHVGQAPCAVPVVDEDQQYVGIIS 384
           PL   L+  G  P AVP VDE +    +I+
Sbjct: 285 PLEAYLATHGPLPAAVPKVDEGETLSNLIT 314


Lambda     K      H
   0.319    0.137    0.378 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 368
Number of extensions: 20
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 2
Number of HSP's successfully gapped: 2
Length of query: 400
Length of database: 351
Length adjustment: 30
Effective length of query: 370
Effective length of database: 321
Effective search space:   118770
Effective search space used:   118770
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory