Align Propionyl-CoA carboxylase carboxyl transferase subunit (EC 6.4.1.3) (characterized)
to candidate 3607303 Dshi_0718 carboxyl transferase (RefSeq)
Query= reanno::Dino:3607303 (510 letters) >lcl|FitnessBrowser__Dino:3607303 Dshi_0718 carboxyl transferase (RefSeq) Length = 510 Score = 1018 bits (2632), Expect = 0.0 Identities = 510/510 (100%), Positives = 510/510 (100%) Query: 1 MKDIQHELDQRRLDARMGGGEKRIASQHAKGKLTARERIELLLDEGSFEEFDMFITHRCT 60 MKDIQHELDQRRLDARMGGGEKRIASQHAKGKLTARERIELLLDEGSFEEFDMFITHRCT Sbjct: 1 MKDIQHELDQRRLDARMGGGEKRIASQHAKGKLTARERIELLLDEGSFEEFDMFITHRCT 60 Query: 61 DFGMQEQKPAGDGVVTGWGTVNGRQVYVFSQDFTVLGGSVSATHAKKICKIMDMAIENGA 120 DFGMQEQKPAGDGVVTGWGTVNGRQVYVFSQDFTVLGGSVSATHAKKICKIMDMAIENGA Sbjct: 61 DFGMQEQKPAGDGVVTGWGTVNGRQVYVFSQDFTVLGGSVSATHAKKICKIMDMAIENGA 120 Query: 121 PVIGINDSGGARIQEGVDSLAGYGDVFQRNIEASGVVPQISMIMGPCAGGAVYSPAMTDF 180 PVIGINDSGGARIQEGVDSLAGYGDVFQRNIEASGVVPQISMIMGPCAGGAVYSPAMTDF Sbjct: 121 PVIGINDSGGARIQEGVDSLAGYGDVFQRNIEASGVVPQISMIMGPCAGGAVYSPAMTDF 180 Query: 181 IFMVKDSSYMFVTGPDVVKTVTNEVVTAEELGGASTHTRKSSVADAAFENDVEALAEVRR 240 IFMVKDSSYMFVTGPDVVKTVTNEVVTAEELGGASTHTRKSSVADAAFENDVEALAEVRR Sbjct: 181 IFMVKDSSYMFVTGPDVVKTVTNEVVTAEELGGASTHTRKSSVADAAFENDVEALAEVRR 240 Query: 241 LIDFLPLNNREKAPVRPFFDDPARVEESLDTLIPDNPNQPYDMKELITKVADEGDFYEIQ 300 LIDFLPLNNREKAPVRPFFDDPARVEESLDTLIPDNPNQPYDMKELITKVADEGDFYEIQ Sbjct: 241 LIDFLPLNNREKAPVRPFFDDPARVEESLDTLIPDNPNQPYDMKELITKVADEGDFYEIQ 300 Query: 301 KDFAGNIITGFIRLEGQTVGVVANQPMVLAGVLDIDSARKAARFVRFCDCFEIPILTLVD 360 KDFAGNIITGFIRLEGQTVGVVANQPMVLAGVLDIDSARKAARFVRFCDCFEIPILTLVD Sbjct: 301 KDFAGNIITGFIRLEGQTVGVVANQPMVLAGVLDIDSARKAARFVRFCDCFEIPILTLVD 360 Query: 361 VPGFLPGTGQEYNGVIKHGAKLLFAYGEATVPKVTVITRKAYGGAYVVMSSKHLRGDINY 420 VPGFLPGTGQEYNGVIKHGAKLLFAYGEATVPKVTVITRKAYGGAYVVMSSKHLRGDINY Sbjct: 361 VPGFLPGTGQEYNGVIKHGAKLLFAYGEATVPKVTVITRKAYGGAYVVMSSKHLRGDINY 420 Query: 421 AWPTAEVAVMGAKGATEIIHRADLGDPEKIAARTAEYEDRFANPFVAAERGFIDEVIMPQ 480 AWPTAEVAVMGAKGATEIIHRADLGDPEKIAARTAEYEDRFANPFVAAERGFIDEVIMPQ Sbjct: 421 AWPTAEVAVMGAKGATEIIHRADLGDPEKIAARTAEYEDRFANPFVAAERGFIDEVIMPQ 480 Query: 481 STRRRVARAFAALRNKRAVKPWKKHDNIPL 510 STRRRVARAFAALRNKRAVKPWKKHDNIPL Sbjct: 481 STRRRVARAFAALRNKRAVKPWKKHDNIPL 510 Lambda K H 0.320 0.137 0.401 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1071 Number of extensions: 33 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 510 Length of database: 510 Length adjustment: 34 Effective length of query: 476 Effective length of database: 476 Effective search space: 226576 Effective search space used: 226576 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory